[1] |
王学军, 周勇水, 彭君, 等. 川东北普光地区侏罗系千佛崖组页岩气重大突破[J]. 中国石油勘探, 2022, 27(5): 52-61.
doi: 10.3969/j.issn.1672-7703.2022.05.005
|
|
[WANG X J, ZHOU Y S, PENG J, et al. Major breakthrough of shale gas in the Jurassic Qianfoya Formation in Puguang area in the northeastern Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(5): 52-61.]
doi: 10.3969/j.issn.1672-7703.2022.05.005
|
[2] |
李进, 王学军, 王睿, 等. 普光地区千佛崖组半深湖相页岩含气性特征及影响因素[J]. 断块油气田, 2022, 29(6): 736-743.
|
|
[LI J, WANG X J, WANG R, et al. Gas-bearing characteristics and influencing factors of semi-deep lacustrine shale of Qianfoya Formation in Puguang Area[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 736-743.]
|
[3] |
石秉忠, 夏柏如. 硬脆性泥页岩水化过程的微观结构变化[J]. 大庆石油学院学报, 2011, 35(6): 28-34.
|
|
[SHI B Z, XIA B R. Microstructure change of hard brittle shale in hydration process[J]. Journal of Northeast Petroleum University, 2011, 35(6): 28-34.]
|
[4] |
石秉忠, 夏柏如, 林永学, 等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报, 2012, 33(1): 137-142.
doi: 10.7623/syxb201201020
|
|
[SHI B Z, XIA B R, LIN Y X, et al. CT imaging and mechanism of hydration fracture development in hard brittle shale[J]. Acta Petrolei Sinica, 2012, 33(1): 137-142.]
|
[5] |
林永学, 高书阳, 曾义金. 基于层析成像技术的页岩微裂缝扩展规律研究[J]. 中国科学: 物理学力学天文学, 2017, 47(11): 1-7.
|
|
[LIN Y X, GAO S Y, ZENG Y J. Study on the propagation law of shale micro-cracks in tomography technology[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2017, 47(11): 1-7.]
|
[6] |
马天寿, 陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发, 2014, 41(2): 227-233.
|
|
[MA T S, CHEN P. Study on meso-damage characteristics of shale hydration based on CT scanning technology[J]. Petroleum Exploration and Development, 2014, 41(2): 227-233.]
|
[7] |
贾利春, 张超平, 周井红. 结合CT技术的页岩水化损伤规律研究[J]. 断块油气田, 2017, 24(2): 214-217.
|
|
[JIA L C, ZHANG C P, ZHOU J H. Study on hydration damage law of shale combined with CT technology[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 214-217.]
|
[8] |
高书阳, 豆宁辉, 林永学, 等. 川渝地区龙马溪组页岩储层水化特征评价方法[J]. 石油钻探技术, 2018, 46(3): 20-26.
|
|
[GAO S Y, DOU N H, LIN Y X, et al. Evaluation method of shale reservoir hydration characteristics of Longmaxi Formation in Chuanyu area[J]. Petroleum Drilling Techniques, 2018, 46(3): 20-26.]
|
[9] |
WANG Q, LYU C, COLE D. Effects of hydration on fractures and shale permeability under different confining pressures: An experimental study[J]. Journal of Petroleum Science and Engineering, 2019, 176: 745-753.
|
[10] |
ZHANG S, SHENG J. Study of the propagation of hydration-induced fractures in mancos shale using computerized tomography[J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 95: 1-7.
|
[11] |
卢运虎, 梁川, 金衍, 等. 高温下页岩水化损伤的各向异性实验研究[J]. 中国科学: 物理学力学天文学, 2017, 47(11): 1-8.
|
|
[LU Y H, LIANG C, JIN Y, et al. Anisotropic experimental study on shale hydration damage at high temperature[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2017, 47(11): 1-8.]
|
[12] |
LU Y, ZENG L, JIN Y, et al. Effect of shale anisotropy on hydration and its implications for water uptake[J]. Energies, 2019, 12: 1-20.
|
[13] |
薛华庆, 周尚文, 蒋雅丽, 等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发, 2018, 45(6): 1075-1081.
doi: 10.11698/PED.2018.06.16
|
|
[XUE Q H, ZHOU S W, JIANG Y L, et al. Effect of hydration on microstructure and physical properties of shale[J]. Petroleum Exploration and Development, 2018, 45(6): 1075-1081.]
|
[14] |
隋微波, 田英英, 姚晨晨. 页岩水化微观孔隙结构变化定点观测实验[J]. 石油勘探与开发, 2018, 45(5): 894-901.
doi: 10.11698/PED.2018.05.16
|
|
[SUI W B, TIAN Y Y, YAO C C. Fixed-point observation experiment of shale hydration microscopic pore structure change[J]. Petroleum Exploration and Development, 2018, 45(5): 894-901.]
|
[15] |
吴小林, 刘向君. 泥页岩水化过程中声波时差变化规律研究[J]. 西南石油大学学报, 2007, 29: 57-60.
|
|
[WU X L, LIU X J. Study on the variation law of acoustic time difference during the hydration process of shale[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2007, 29: 57-60.]
|
[16] |
王光兵, 刘向君, 梁利喜. 硬脆性页岩水化的超声波透射实验研究[J]. 科学技术与工程, 2017, 17(36): 60-66.
|
|
[WANG G B, LIU X J, LIANG L X. Experimental study on ultrasonic transmission of hard brittle shale hydration[J]. Science Technology and Engineering, 2017, 17(36): 60-66.]
|
[17] |
王萍, 屈展. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学, 2015, 36(3): 687-693.
|
|
[WANG P, QU Z. Study on hydration damage evolution of brittle hard shale based on nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2015, 36(3): 687-693.]
|
[18] |
钱斌, 朱炬辉, 杨海, 等. 页岩储集层岩心水化作用实验[J]. 石油勘探与开发, 2017, 44(4): 615-621.
doi: 10.11698/PED.2017.04.15
|
|
[QIAN B, ZHU J H, YANG H, et al. Core hydration experiment of shale reservoir[J]. Petroleum Exploration and Development, 2017, 44(4): 615-621.]
|
[19] |
曾凡辉, 张蔷, 陈斯瑜, 等. 水化作用下页岩微观孔隙结构的动态表征[J]. 天然气工业, 2020, 40(10): 66-75.
|
|
[ZENG F H, ZHANG Q, CHEN S Y, et al. Dynamic characterization of microscopic pore structure of shale under hydration[J]. Natural Gas Industry, 2020, 40(10): 66-75.]
|
[20] |
刘敬平, 孙金声. 页岩气藏地层井壁水化失稳机理与抑制方法[J]. 钻井液与完井液, 2016, 33(3): 25-29.
|
|
[LIU J P, SUN J S. Mechanism and inhibition method of wellbore hydration instability in shale gas reservoirs[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 25-29.]
|
[21] |
刘向君, 熊健, 梁利喜. 龙马溪组硬脆性页岩水化实验研究[J]. 西南石油大学学报(自然科学版), 2016, 38(3): 178-186.
doi: 10.11885/j.issn.1674-5086.2014.04.10.05
|
|
[LIU X J, XIONG J, LIANG L X. Experimental study on hydration of hard brittle shale in Longmaxi Formation[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 178-186.]
|
[22] |
WANG Y, LIU X, LIANG L, et al. Experimental study on the damage of organic-rich shale during water-shale interaction[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 1-15.
|
[23] |
WANG P, QU Z, CHARALAMPIDOU E. Shale hydration damage captured by nuclear magnetic resonance[J]. Journal of Dispersion Science and Technology, 2019, 40(8): 1129-1135.
doi: 10.1080/01932691.2018.1496839
|
[24] |
余致理, 郭高峰, 余恒, 等. 水化作用下页岩微观孔隙结构伤害特征[J]. 西安石油大学学报(自然科学版), 2022, 37(1): 44-50.
|
|
[YU Z L, GUO G F, YU H, et al. Damage characteristics of shale microscopic pore structure under hydration[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(1): 44-50.]
|
[25] |
MA T, YANG C, CHEN P, et al. On the damage constitutive model for hydrated shale using CT scanning technology[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 204-214.
|
[26] |
国家能源局.沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法: SY/T 5163-2018[S]. 北京: 中国标准出版社, 2018.
|
|
[National Energy Administration.Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction: SY/T 5163-2018[S]. Beijing: Standards Press of China, 2018.]
|
[27] |
国家能源局.岩石样品扫描电子显微镜分析方法: SY/T 5162-2021[S]. 北京: 中国标准出版社, 2021.
|
|
[National Energy Administration.Analytical method for rock samples by scanning electron microscope: SY/T 5163-2021[S]. Beijing: Standards Press of China, 2021.]
|
[28] |
国家能源局.钻井液测试泥页岩理化性能试验方法: SY/T 5613-2016[S]. 北京: 中国标准出版社, 2016.
|
|
[National Energy Administration.Testing of drilling fluids-Test method of physical and chemical properties for shale: SY/T 5613-2016[S]. Beijing: Standards Press of China, 2016.]
|
[29] |
国家能源局.油藏岩石润湿性测定方法: SY/T 5153-2017[S]. 北京: 中国标准出版社, 2017.
|
|
[National Energy Administration.Test method of reservoir rock wettability: SY/T 5153-2017[S]. Beijing: Standards Press of China, 2017.]
|
[30] |
中国国家标准化管理委员会.玻璃表面疏水污染物检测接触角测量法: GB/T 24368-2009[S]. 北京: 中国标准出版社, 2009.
|
|
[Standardization Administration of the People’s Republic of China.Test method for hydrophobic contamination on glass by contact angle measurement: GB/T 24368-2009[S]. Beijing: Standards Press of China, 2009.]
|
[31] |
国家能源局.岩石三维孔隙结构测定方法第1部分:CT扫描法:SY/T 7410.1-2018[S]. 北京: 中国标准出版社, 2018.
|
|
[National Energy Administration.3D pore structure characterization of rocks-Part 1: CT scanning method:SY/T 7410.1-2018[S]. Beijing: Standards Press of China, 2018.]
|
[32] |
金衍, 陈勉, 陈治喜, 等. 弱面地层的直井井壁稳定力学模型[J]. 钻采工艺, 1999, 22(3): 13-14.
|
|
[JIN Y, CHEN M, CHEN Z X, ey al. Mechanics model of sidewall stability of straight wells drilled through weakly consoladated formations[J]. Drilling & Production Technology, 1999, 22(3): 13-14.]
|
[33] |
金衍, 陈勉, 柳贡慧, 等. 弱面地层斜井井壁稳定性分析[J]. 石油大学学报: 自然科学版, 1999, 23(4): 33-35.
|
|
[JIN Y, CHEN M, LIU G H, ey al. Analysis on borehole stability of weak-face formation in directional well[J]. Journal of the University of Petroleum, China: Edition of Natural Science, 1999, 23(4): 33-35.]
|
[34] |
丁立钦, 王志乔, 王瑜, 等. 层理性地层钻井稳定性分析模型[J]. 探矿工程(岩土钻掘工程), 2017, 44(3): 1-9.
|
|
[DING L Q, WANG Z Q, WANG Y, et al. Analysis model of borehole stability in bedding formations[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2017, 44(3): 1-9.]
|
[35] |
曹文科, 邓金根, 蔚宝华, 等. 页岩层理弱面对井壁坍塌影响分析[J]. 中国海上油气, 2017, 29(2): 114-122.
|
|
[CAO W K, DENG J G, YU B H, et al. Analysis on the influence of bedding shale weak planes on borehole caving[J]. CHINA Offshore Oil and Gas, 2017, 29(2): 114-122.]
|
[36] |
陈平, 马天寿, 夏宏泉. 含多组弱面的页岩水平井坍塌失稳预测模型[J]. 天然气工业, 2014, 34(12): 87-93.
|
|
[CHEN P, MA T S, XIA H Q. A collapse pressure prediction model of horizontal shale gas wells with multiple weak planes[J]. Natural Gas Industry, 2014, 34(12): 87-93.]
|
[37] |
刘向君, 叶仲斌, 陈一健. 岩石弱面结构对井壁稳定性的影响[J]. 天然气工业, 2002, 22(2): 41-42.
|
|
[LIU X J, YE Z B, CHEN Y J. Influence of rock weak plane texture on sidewall stability[J]. Natural Gas Industry, 2002, 22(2): 41-42.]
|
[38] |
刘志远, 陈勉, 金衍, 等. 多弱面地层水平井裸眼井壁垮塌量分析[J]. 石油勘探与开发, 2014, 41(1): 102-107.
|
|
[LIU Z Y, CHEN M, JIN Y, et al. Calculation model for borehole collapse volume of a horizaontal openhole in multiple-weak-plane formation[J]. Petroleum Exploration and Development, 2014, 41(1): 102-107.]
|
[39] |
马天寿, 陈平. 层理性页岩水平井井壁稳定性分析[J]. 中南大学学报(自然科学版), 2015, 46(4): 1375-1383.
|
|
[MA T S, CHEN P. Analysis of wellbore stability for horizontal wells in stratification shale[J]. Journal of Central South University (Science and Technology), 2015, 46(4): 1375-1383.]
|
[40] |
BO K, JIN Y, LU Y, et al. A quantitative evaluation method of anti-sloughing drilling fluid inhibition for deep mudstone[J]. Energies, 2022, 15(3): 1-21.
|