[1] |
PU L, XU P, XU M B, et al. Lost circulation materials for deep and ultra-deep wells: A review[J]. Journal of Petroleum Science and Engineering, 2022, 214: 110404.
|
[2] |
CHEN X Y, WENG C K, TAO L, et al. A novel method for predicting formation pore pressure ahead of the drill bit by embedding petrophysical theory into machine learning based on seismic and logging-while-drilling data[J]. Petroleum Science, 2025, 22(4): 1-12.
|
[3] |
FENG K, LIU S, YIN Z, et al. Gas kick and lost circulation risk identification method with multi-parameters based on support vector machine for drilling in deep or ultradeep waters[J]. Engineering Science and Technology, an International Journal, 2025, 64: 102007.
|
[4] |
SUN J S, BAI Y R, CHENG R, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3): 732-743.
doi: 10.1016/S1876-3804(21)60059-9
|
[5] |
SABAH M, MEHRAD M, ASHRAFI S B, et al. Hybrid machine learning algorithms to enhance lost-circulation prediction and management in the Marun oil field[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108125.
|
[6] |
PANG H W, MENG H, WANG H Q, et al. Lost circulation prediction based on machine learning[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109364.
|
[7] |
WU L W, WANG X P, ZHANG Z Y, et al. Intelligent monitoring model for lost circulation based on unsupervised time series autoencoder[J]. Processes, 2024, 12(7): 1297.
|
[8] |
GENG Z, WANG Y F. Physics-guided deep learning for predicting geological drilling risk of wellbore instability using seismic attributes data[J]. Engineering Geology, 2020, 279: 105857.
|
[9] |
XU Y Q, LIU K, HE B L, et al. Risk pre-assessment method for regional drilling engineering based on deep learning and multi-source data[J]. Petroleum Science, 2023, 20(6): 3654-3672.
|
[10] |
YIN Q S, YANG J, TYAGI M, et al. Field data analysis and risk assessment of gas kick during industrial deepwater drilling process based on supervised learning algorithm[J]. Process Safety and Environmental Protection, 2021, 146: 312-328.
|
[11] |
徐同台, 刘玉杰, 申威, 等. 钻井工程防漏堵漏技术[M]. 北京: 石油工业出版社, 1997.
|
|
[XU T T, LIU Y J, SHEN W, et al. Drilling engineering leakage prevention and plugging technology[M]. Beijing: Petroleum Industry Press, 1997.]
|
[12] |
赵良孝. 重泥浆压裂漏失的机理和测井诊断方法[J]. 天然气工业, 1996, 16(2): 19-22.
|
|
[ZHAO L X. Mechanism of heavy mud fracturing loss and logging diagnosis methods[J]. Natural Gas Industry, 1996, 16(2): 19-22.]
|
[13] |
曾义金. 塔北地区碳酸盐岩储层欠平衡压力钻井技术[J]. 石油钻探技术, 2001, 29(2): 7-9.
|
|
[ZENG Y J. Underbalanced pressure drilling technology for carbonate reservoirs in Tabei area[J]. Petroleum Drilling Techniques, 2001, 29(2): 7-9.]
|
[14] |
OZDEMIRTAS M, BABADAGLI T, KURU E. Effects of fractal fracture surface roughness on borehole ballooning[J]. Vadose Zone Journal, 2009, 8(1): 250-257.
|
[15] |
PORDEL SHAHRI M, ZEYGHAMI M, MAJIDI R. Investigation of fracture ballooning and breathing in naturally fractured reservoirs: Effect of fracture deformation law[C]. Nigeria Annual International Conference and Exhibition. Abuja: Society of Petroleum Engineers, 2011.
|
[16] |
LI P, CAI M F, MIAO S J, et al. Accurate measurement techniques and prediction approaches for the in-situ rock stress[J]. Scientific Reports, 2024, 14(1): 13226.
doi: 10.1038/s41598-024-64030-7
pmid: 38851822
|
[17] |
GUGLIELMI Y, MCCLURE M, BURGHARDT J, et al. Using in-situ strain measurements to evaluate the accuracy of stress estimation procedures from fracture injection/shut-in tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 170: 105521.
|
[18] |
YONG R, WU J F, HUANG H Y, et al. Complex in situ stress states in a deep shale gas reservoir in the southern Sichuan Basin, China: From field stress measurements to in situ stress modeling[J]. Marine and Petroleum Geology, 2022, 141: 105702.
|
[19] |
邓金根, 张洪生. 钻井工程中井壁失稳的力学机理[M]. 北京: 石油工业出版社, 1998.
|
|
[DENG J G, ZHANG H S. Mechanical mechanism of wellbore instability in drilling engineering[M]. Beijing: Petroleum Industry Press, 1998.]
|
[20] |
黄荣樽, 陈勉, 邓金根, 等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液, 1995, 12(3): 15-21, 25.
|
|
[HUANG R Z, CHEN M, DENG J G, et al. Coupling study of mechanical and chemical effects on shale wellbore stability[J]. Drilling Fluid & Completion Fluid, 1995, 12(3): 15-21, 25.]
|
[21] |
ZHANG W J, MENG X K, ZHANG W B, et al. Dynamic risk assessment of deepwater drilling using data-based and probabilistic approach[J]. Ocean Engineering, 2023, 268: 113414.
|
[22] |
DUPRIEST F E, KOEDERITZ W L. Maximizing drill rates with real-time surveillance of mechanical specific energy[C]// SPE/IADC Drilling Conference. Amsterdam: Society of Petroleum Engineers, 2005.
|
[23] |
ELMGERBI A, THONHAUSER G. Holistic autonomous model for early detection of downhole drilling problems in real-time[J]. Process Safety and Environmental Protection, 2022, 164: 418-434.
|
[24] |
REMMERT S M, WITT J W, DUPRIEST F E. Implementation of ROP management process in Qatar North Field[C]// SPE/IADC Drilling Conference. Amsterdam: Society of Petroleum Engineers, 2007.
|
[25] |
史玉升, 梁书云. 基于目标函数的钻压优化模型建模方法[J]. 地质与勘探, 2000, (2): 7-9, 12.
|
|
[SHI Y S, LIANG S Y. Modeling method of weight on bit optimization based on objective function[J]. Geology and Exploration, 2000, (2): 7-9, 12.]
|
[26] |
樊洪海, 冯广庆, 肖伟, 等. 基于机械比能理论的钻头磨损监测新方法[J]. 石油钻探技术, 2012, 40(3): 116-120.
|
|
[FAN H H, FENG G Q, XIAO W, et al. A new method for bit wear monitoring based on mechanical specific energy theory[J]. Petroleum Drilling Techniques, 2012, 40(3): 116-120.]
|
[27] |
崔猛, 李佳军, 纪国栋, 等. 基于机械比能理论的复合钻井参数优选方法[J]. 石油钻探技术, 2014, 42(1): 66-70.
|
|
[CUI M, LI J J, JI G D, et al. Optimization method of composite drilling parameters based on mechanical specific energy theory[J]. Petroleum Drilling Techniques, 2014, 42(1): 66-70.]
|
[28] |
LIU Z K, MA Q, SHI X W, et al. A dynamic quantitative risk assessment method for drilling well control by integrating multi types of risk factors[J]. Process Safety and Environmental Protection, 2022, 167: 162-172.
|
[29] |
卢运虎, 金衍, 王汉青, 等. 井漏风险层位钻前智能识别方法研究[J]. 石油科学通报, 2024, 9(4): 574-585.
|
|
[LU Y H, JIN Y, WANG H Q, et al. Research on intelligent identification method for pre-drilling lost circulation risk zones[J]. Petroleum Science Bulletin, 2024, 9(4): 574-585.]
|
[30] |
聂臻, 夏朝辉, 吴波鸿, 等. 中东地区碳酸盐岩油藏钻井工程技术现状及发展趋势[J]. 石油钻探技术, 2024, 52(1): 1-9.
|
|
[NIE Z, XIA Z H, WU B H, et al. Current status and development trends of drilling engineering technologies for carbonate reservoirs in the Middle East[J]. Petroleum Drilling Techniques, 2024, 52(1): 1-9.]
|
[31] |
金衍, 卢运虎, 李再均. 一种井漏层位钻前风险预测新方法[J]. 石油钻采工艺, 2008, (3): 24-28.
|
|
[JIN Y, LU Y H, LI Z J. A new method for pre-drilling risk prediction of lost circulation zones[J]. Oil Drilling & Production Technology, 2008, (3): 24-28.]
|
[32] |
PANG H W, WANG H Q, XIAO Y T, et al. Machine learning for carbonate formation drilling: Mud loss prediction using seismic attributes and mud loss records[J]. Petroleum Science, 2023, 20(6): 1-15.
|
[33] |
DING Y, CUI M, WANG H G, et al. Predicting seismic-based anisotropy for prevent pre-drill risk using a novel type neural network[C]// SPE Asia Pacific Oil and Gas Conference and Exhibition. Virtual: Society of Petroleum Engineers, 2021.
|
[34] |
周长所, 杨进, 谢仁军, 等. 渤中区域裂缝性漏失风险量化评价方法[J]. 钻采工艺, 2023, (6): 14-20.
doi: 10.3969/J.ISSN.1006-768X.2023.06.03
|
|
[ZHOU C S, YANG J, XIE R J, et al. Quantitative evaluation method for fractured lost circulation risk in Bozhong area[J]. Drilling & Production Technology, 2023, (6): 14-20.]
|
[35] |
张野, 程飞, 张鑫, 等. 渤中潜山油气藏压力控制钻井技术应用研究[J]. 中国石油和化工标准与质量, 2017, 37(13): 160-161.
|
|
[ZHANG Y, CHENG F, ZHANG X, et al. Application research on pressure control drilling technology in Bozhong subsurface oil and gas reservoirs[J]. China Petrol Chem Stand Qual, 2017, 37(13): 160-161.]
|
[36] |
马英文. 渤中地区复杂易塌地层安全钻井技术研究与实践[R]. 天津: 中海石油, 2018.
|
|
[MA Y W. Research and practice of safe drilling technology in complex collapsible strata in Bozhong area[R]. Tianjin:CNOOC, 2018.]
|
[37] |
张玉强, 孙晓飞, 韩雪银, 等. 渤中地区深井钻井配套钻具技术[J]. 内江科技, 2019, 40(2): 25-26.
|
|
[ZHANG Y Q, SUN X F, HAN X Y, et al. Supporting drill string technology for deep well drilling in Bozhong area[J]. Neijiang Science and Technology, 2019, 40(2): 25-26.]
|
[38] |
李中, 陈浩东, 刘和兴, 等. 深水窄密度窗口地层封堵承压钻井液技术[J]. 钻井液与完井液, 2021, 38(4): 428-434.
|
|
[LI Z, CHEN H D, LIU H X, et al. Plugging and pressure-bearing drilling fluid technology for narrow density window formation in deepwater[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 428-434.]
|
[39] |
谢仁军, 李中, 刘书杰, 等. 南海陵水17-2深水气田开发钻完井工程方案研究与实践[J]. 中国海上油气, 2022, 34(2): 116-124.
|
|
[XIE R J, LI Z, LIU S J, et al. Research and practice of drilling and completion engineering for LS17-2 deepwater gas field in South China Sea[J]. China Offshore Oil Gas, 2022, 34(2): 116-124.]
|
[40] |
李振宇, 何碧竹, 贠晓瑞, 等. 共和盆地东北部花岗岩型干热岩井下裂缝系统及其构造成因[J]. 岩石学报, 2024, 40(12): 3964-3983.
|
|
[LI Z Y, HE B Z, YUN X R, et al. Subsurface fracture systems and their tectonic genesis of granite-type hot dry rock in northeastern Gonghe Basin[J]. Acta Petrologica Sinica, 2024, 40(12): 3964-3983.]
|
[41] |
贾利春, 陈勉, 侯冰, 等. 裂缝性地层钻井液漏失模型及漏失规律[J]. 石油勘探与开发, 2014, 41(1): 95-101.
|
|
[JIA L C, CHEN M, HOU B, et al. Lost circulation model and laws in fractured formations[J]. Petroleum Exploration and Development, 2014, 41(1): 95-101.]
|
[42] |
钟高明, 赵向原, 石磊, 等. 松南长岭断陷查干花次凹火石岭组火山碎屑岩储层特征及主控因素[J]. 天然气地球科学, 2024, 35(1): 84-95.
doi: 10.11764/j.issn.1672-1926.2023.09.003
|
|
[ZHONG G M, ZHAO X Y, SHI L, et al. Characteristics and main controlling factors of volcaniclastic reservoirs in Huoshiling Formation of Chaganhua Subsag, Changling Fault Depression, Southern Songliao Basin[J]. Natural Gas Geoscience, 2024, 35(1): 84-95.]
|
[43] |
刘永贵, 宋涛, 徐用军. 高温深井微裂缝封堵评价方法及其应用——以松辽盆地徐深气田为例[J]. 天然气工业, 2016, 36(2): 78-83.
|
|
[LIU Y G, SONG T, XU Y J. Evaluation method and application of micro-fracture plugging in high-temperature deep wells: A case study of Xushen Gas Field in Songliao Basin[J]. Natural Gas Industry, 2016, 36(2): 78-83.]
|
[44] |
邓津辉, 谭忠健, 袁亚东, 等. 渤海海域古近系—新近系裂缝性漏失断缝体系特征及力学机理研究[J]. 中国石油勘探, 2023, 28(5): 84-98.
doi: 10.3969/j.issn.1672-7703.2023.05.007
|
|
[DENG J H, TAN Z J, YUAN Y D, et al. Characteristics and mechanical mechanisms of fractured lost circulation fault-fracture systems in Paleogene-Neogene of Bohai Sea area[J]. China Petroleum Exploration, 2023, 28(5): 84-98.]
|
[45] |
LI M X, CAO H, YANG Z F, et al. Intelligent prestack multitrace seismic inversion constrained by probabilistic geologic information[J]. Geophysics, 2025, 90(2): IM15-IM34.
|
[46] |
杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克深气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(3): 399-414.
doi: 10.7623/syxb202103012
|
|
[YANG H J, LI Y, TANG Y G, et al. Accumulation conditions and key exploration & development technologies of Keshen Gas Field in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(3): 399-414.]
|
[47] |
EATON B A. The equation for geopressure prediction from well logs[C]// Fall Meeting of the Society of Petroleum Engineers of AIME. Dallas, Texas: Society of Petroleum Engineers of AIME, 1975.
|