[1] |
吕振虎, 吕蓓, 罗垚, 等. 基于光纤监测的段内多簇暂堵方案优化[J]. 石油钻探技术, 2024, 52(01): 114-121.
|
|
[LYU Z H, LYU B, LUO Y, et al. Optimization of in-stage multi-cluster temporary plugging scheme based on optical fiber monitoring[J]. Petroleum Drilling Techniques, 2024, 52(1): 114-121.]
|
[2] |
BARRAZA J, CAPDEROU C, JONES M C, et al. Increased cluster efficiency and fracture network complexity using degradable diverter particulates to increase production: Permian basin wolfcamp shale case study[C]. San Antonio: SPE Annual Technical Conference and Exhibition, 2017.
|
[3] |
WANG Y, FAN Y, WANG X J. Study on migration law of multiscale temporary plugging agent in rough fractures of shale oil reservoirs[J]. Frontiers in Physics, 2023, 11: 1228006.
|
[4] |
LI M H, ZHOU F J, SUN Z H, et al. Experimental study on plugging performance and diverted fracture geometry during different temporary plugging and diverting fracturing in Jimusar shale[J]. Journal of Petroleum Science and Engineering, 2022, 215: 110580.
|
[5] |
KANG Y L, ZHOU H X, XU C Y, et al. Experimental study on the effect of fracture surface morphology on plugging zone strength based on 3D printing[J]. Energy, 2023, 262: 125419.
|
[6] |
曾凡辉, 胡大淦, 张宇, 等. 多尺度暂堵剂粒度参数优化及应用[J]. 大庆石油地质与开发, 2023, 42(05): 57-66.
|
|
[ZENG F H, HU D G, ZHANG Y, et al. Optimization and application of particle parameters of multi-scale temporary plugging agent[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(05): 57-66.]
|
[7] |
李伟, 肖阳, 陈明鑫, 等. 深井转向压裂暂堵剂研究及应用[J]. 特种油气藏, 2022, 29(01): 154-159.
|
|
[LI W, XIAO Y, CHEN M X, et al. Study and application of temporary plugging agent for turnaround fracturing in deep well[J]. Special Oil & Gas Reservoirs, 2022, 29(01): 154-159.]
|
[8] |
ZHANG L F, ZHOU F J, FENG W, et al. Temporary plugging mechanism of degradable diversion agents within reproduced acid-etched fracture by using 3D printing model[C]. Abu Dhabi: Abu Dhabi International Petroleum Exhibition & Conference, 2019.
|
[9] |
ZHANG L F, ZHOU F J, MOU J Y, et al. An integrated experimental method to investigate tool-less temporary-plugging multistage acid fracturing of horizontal well by using self-degradable diverters[J]. SPE Journal, 2020, 25(03): 1204-1219.
|
[10] |
WANG B, ZHOU F J, YANG C, et al. Experimental study on injection pressure response and fracture geometry during temporary plugging and diverting fracturing[J]. SPE Journal, 2020, 25(02): 573-586.
|
[11] |
许江文, 张谷畅, 李建民, 等. 暂堵剂形状对裂缝封堵影响规律的实验研究[J]. 断块油气田, 2022, 29(06): 842-847.
|
|
[XU J W, ZHANG G C, LI J M, et al. Experimental study on influence law of temporary plugging agent shape on fracture plugging[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 842-847.]
|
[12] |
WANG L, XIE X T, ZHANG X, et al. Experimental Investigation on the Threshold Transportable Concentration of Temporary Plugging Materials of Different Sizes of Slide Sleeves[C]. Atlanta:the 57th US Rock Mechanics/Geomechanics Symposium, 2023.
|
[13] |
ZHANG J C, GUO X D, WANG M X, et al. Simulation of temporary plugging agent transport and optimization of fracturing parameters based on fiber optic monitoring data[J]. Frontiers in Chemical Engineering, 2024, 6: 1324907.
|
[14] |
WANG D B, QIN H, ZHENG C, et al. Transport mechanism of temporary plugging agent in complex fractures of hot dry rock: A numerical study[J]. Geothermics, 2023, 111: 102714.
|
[15] |
秦浩, 汪道兵, 杨凯, 等. CFD-DEM耦合的干热岩人工裂隙内暂堵剂运移规律研究[J]. 石油科学通报, 2022, 7(01): 81-92.
|
|
[QIN H, WANG D B, YANG K, et al. Investigation into the migration characteristics oftemporary diverting agent in hydraulic fracturing of hot dry rock based on CFD-DEM coupling[J]. Petroleum Science Bulletin, 2022, 01: 81-92.]
|
[16] |
蒋廷学, 王海涛, 赵金洲, 等. 深层页岩气水平井多级双暂堵压裂关键工艺优化[J]. 天然气工业, 2023, 43(11): 100-108.
|
|
[JIANG T X, WANG H T, ZHAO J Z, et al. Optimized multi-stage dual temporary plugging fracturing technology in deepshale gas horizontal wells[J]. Natural Gas Industry, 2023, 43(11): 100-108.]
|
[17] |
SHAHRI M P, HUANG J, SMITH C S, et al. An engineered approach to design biodegradables solid particulate diverters: Jamming and plugging[C]. San Antonio:SPE Annual Technical Conference and Exhibition, 2017.
|
[18] |
ZHU B Y, TANG H M, WANG X, et al. Coupled CFD-DEM simulation of granular LCM bridging in a fracture[J]. Particulate Science and Technology, 2020, 38(3): 371-380.
|
[19] |
LI J, QIU Z S, ZHONG H Y, et al. Coupled CFD-DEM analysis of parameters on bridging in the fracture during lost circulation[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106501.
|
[20] |
林啸, 杨兆中, 胡月, 等. 页岩体积压裂支撑剂铺置运移模拟及其应用[J]. 大庆石油地质与开发, 2021, 40(06): 151-157.
|
|
[LIN X, YANG Z Z, HU Y, et al. Simulation of proppant placement and migration in shale volume fracturing and its application[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(06): 151-157.]
|
[21] |
QU H, CHEN X J, HONG J, et al. Experimental and 3D numerical investigation on proppant distribution in a perforation cluster involving the artificial neural network prediction[J]. SPE Journal, 2023, 28(04): 1650-1675.
|
[22] |
QU H, ZENG Z J, LIU Y, et al. Experimental and simulation investigations of proppant transport and distribution between perforation clusters in a horizontal well[J]. SPE Journal, 2024: 1-19.
|
[23] |
郭建春, 唐堂, 张涛, 等. 深层页岩压裂多级裂缝内支撑剂运移与分布规律[J]. 天然气工业, 2024, 44(07): 1-11.
|
|
[GUO J C, TANG T, ZHANG T, et al. Migration and distribution laws of proppant in multi-scale fractures during deep shale fracturing[J]. Natural Gas Industry, 2024, 44(7): 1-11.]
|
[24] |
LESCHZINER M A, RODI W. Calculation of strongly curved open channel flow[J]. Journal of the Hydraulics Division, 1979, 105(10): 1297-1314.
|
[25] |
DI FELICE R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1): 153-159.
|
[26] |
DALLAVALLE J M. Micromeritics: The technology of fine particles[M]. New York and Chicago: Pitman Pub. Corp, 1943.
|
[27] |
TANGRI H, GUO Y, CURTIS J S. Packing of cylindrical particles: DEM simulations and experimental measurements[J]. Powder Technology, 2017, 317: 72-82.
|
[28] |
HERTZ H. On the contact of elastic solids[J]. Journal fur die Reine und Angewandte Mathematik, 1882, 92: 156-171.
|
[29] |
MINDLIN R D, DERESIEWICZ H. Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics, 1953, 20(3): 327-344.
|
[30] |
熊书春, 臧孟炎. 基于非解析计算流体力学和离散单元法的大颗粒在流场中的高效率运动模拟[J]. 科学技术与工程, 2021, 21(15): 6140-6146.
|
|
[XIONG S C, ZANG M Y. Efficient simulation about the motion of large particles in fluid based on unresolved computational fluid dynamics and discrete element method[J]. Science Technology and Engineering, 2021, 21(15): 6140-6146.]
|
[31] |
陈光国, 阳宁, 唐达生, 等. 垂直管道颗粒及颗粒群沉降运动规律研究[J]. 泥沙研究, 2010, (04): 16-21.
|
|
[CHEN G G, YANG N, TANG D S, et al. Study on the settling regularity of solid particles in vertical pipelines[J]. Journal of Sediment Research, 2010, (04): 16-21.]
|
[32] |
ERGUN S. Fluid flow through packed columns[J]. Journal of Materials Science and Chemical Engineering, 1952, 48(2): 89-94.
|