[1] |
国家能源局. 2023年全国油气勘探开发十大标志性成果[EB/OL]. [2024-01-09]. https://www.nea.gov.cn/2024-01/09/c_1310759352.htm.
URL
|
|
[National Energy Administration. Top ten Iconic achievements of national oil and gas exploration and development in 2023[EB/OL]. [2024-01-09]. https://www.nea.gov.cn/2024-01/09/c_1310759352.htm.]
URL
|
[2] |
翁定为, 杨战伟, 任登峰, 等. 提高超深裂缝性储层改造体积技术研究及应用[J]. 世界石油工业, 2023, 30 (4): 55-62.
|
|
[WENG D W, YANG Z W, REN D F, et al. Application and improvement of ultra-deep fractured reservoir stimulated volume technology[J]. World Petroleum Industry, 2023, 30 (4): 55-62.]
|
[3] |
王清华, 杨海军, 杨威. 塔里木盆地库车坳陷超深层碎屑岩油气地质研究新进展和下步勘探方向[J]. 石油勘探与开发, (2024-12-17网络首发).
|
|
[WANG Q H, YANG H J, YANG W. New progress and future exploration direction in oil and gas geological research ultra-deep clastic rocks in the Kuqa Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, (2024-12-17 online).]
|
[4] |
何登发, 贾承造, 赵文智, 等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发, 2023, 50(6): 1162-1172.
doi: 10.11698/PED.20230269
|
|
[HE D F, JIA C Z, ZHAO W Z, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6): 1162-1172.]
|
[5] |
郭旭升, 胡宗全, 李双建, 等. 深层—超深层天然气勘探研究进展与展望[J]. 石油科学通报, 2023, 8(4): 461-474.
|
|
[GUO X S, HU Z Q, LI S J, et al. Progress and prospect of natural gas exploration and research in deep and ultra-deep strata[J]. Petroleum Science Bulletin, 2023, 8(4): 461-474.]
|
[6] |
王清华, 杨海军, 徐振平, 等. 塔里木盆地库车坳陷克探1井重大突破与勘探意义[J]. 中国石油勘探, 2023, 28(2): 1-10.
doi: 10.3969/j.issn.1672-7703.2023.02.001
|
|
[WANG Q H, YANG H J, XU Z P, et al. Major breakthrough and exploration significance of Well Ketan 1 in Kuqa Depression, Tarim Basin[J]. China Petroleum Exploration, 2023, 28(2): 1-10.]
doi: 10.3969/j.issn.1672-7703.2023.02.001
|
[7] |
牛新明, 张进双, 周号博. “三超”油气井井控技术难点及对策[J]. 石油钻探技术, 2017, 45(4): 1-7.
|
|
[NIU X M, ZHANG J S, ZHOU H B. Technological challenges and countermeasures in well control of ultra-deep ultra-high temperature and ultra-high pressure oil and gas wells[J]. Petroleum Drilling Techniques, 2017, 45(4): 1-7.]
|
[8] |
杨战伟, 才博, 胥云, 等. 库车山前超深巨厚储层缝网改造有效性评估[J]. 中国石油勘探, 2020, 25(6): 105-111.
doi: 10.3969/j.issn.1672-7703.2020.06.011
|
|
[YANG Z W, CAI B, XU Y, et al. Effectiveness evaluation on network fracturing in ultra-deep and thick reservoirs in Kuqa piedmont[J]. China Petroleum Exploration, 2020, 25(6): 105-111.]
|
[9] |
雷群, 杨战伟, 翁定为, 等. 超深裂缝性致密储集层提高缝控改造体积技术: 以库车山前碎屑岩储集层为例[J]. 石油勘探与开发, 2022, 49(5): 1012-1024.
doi: 10.11698/PED.20210674
|
|
[LEI Q, YANG Z W, WENG D W, et al. Techniques for improving fracture-controlled stimulated reservoir volume in ultra-deep fractured tight reservoirs: A case study of Kuqa piedmont clastic reservoirs, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(5): 1012-1024.]
|
[10] |
雷群, 胥云, 杨战伟, 等. 超深油气储集层改造技术进展与发展方向[J]. 石油勘探与开发, 2021, 48(1): 193-201.
doi: 10.11698/PED.2021.01.18
|
|
[LEI Q, XU Y, YANG Z W, et al. Progress and development directions of stimulation techniques for ultra-deep oil and gas reservoirs[J]. Petroleum Exploration and Development, 2021, 48(1): 193-201.]
|
[11] |
张宁宁, 王青, 王建君, 等. 近20年世界油气新发现特征与勘探趋势展望[J]. 中国石油勘探, 2018, 23(1): 44-53.
doi: 10.3969/j.issn.1672-7703.2018.01.005
|
|
[ZHANG N N, WANG Q, WANG J J, et al. Characteristics of oil and gas discoveries in recent 20 years and future exploration in the world[J]. China Petroleum Exploration, 2018, 23(1): 44-53.]
doi: 10.3969/j.issn.1672-7703.2018.01.005
|
[12] |
徐春春, 邹伟宏, 杨跃明, 等. 中国陆上深层油气资源勘探开发现状及展望[J]. 天然气地球科学, 2017, 28(8): 1139-1153.
doi: 10.11764/j.issn.1672-1926.2017.07.014
|
|
[XU C C, ZOU W H, YANG Y M, et al. Status and prospects of exploration and exploitation of the deep oil and gas resources onshore China[J]. Natural Gas Geoscience, 2017, 28(8): 1139-1153.]
|
[13] |
祁大晟, 裴柏林. 塔里木盆地东河油田机械防砂物理实验研究[J]. 天然气地球科学, 2008, (1): 133-136.
doi: 10.11764/j.issn.1672-1926.2008.01.133
|
|
[QI D S, PEI B L. Physical experiment study on mechanical sand control in Donghe Oilfield, Tarim Basin[J]. Natural Gas Geoscience, 2008, (1): 133-136.]
|
[14] |
陈凌, 胡国亮. 从酸压机理探讨塔河油田酸压工艺发展方向[J]. 石油钻探技术, 2004, 32(4): 69-71.
|
|
[CHEN L, HU G L. The developing tread of acid fracturing technique in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2004, 32(4): 69-71.]
|
[15] |
胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5): 874-887.
doi: 10.11698/PED.2018.05.14
|
|
[XU Y, LEI Q, CHEN M, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874-557.]
|
[16] |
程兴生, 张福祥, 徐敏杰, 等. 低成本加重瓜胶压裂液的性能与应用[J]. 石油钻采工艺, 2011, 33(2): 91-93.
|
|
[CHENG X S, ZHANG F X, XU M J, et al. Performance and application of weighted GHPG fracturing fluid with low cost[J]. Oil Drilling&Production Technology, 2011, 33(2): 91-93.]
|
[17] |
徐敏杰, 管保山, 刘萍, 等. 近十年国内超高温压裂液技术研究进展[J]. 油田化学, 2018, 35(4): 721-725.
|
|
[XU M J, GUAN B S, LIU P, et al. Domestic progress of ultrahigh-temperature fracturing fluids in the last decade[J]. Oilfield Chemistry, 2018, 35(4): 721-725.]
|
[18] |
才博, 张以明, 金凤鸣, 等. 超高温储层深度酸压液体体系研究与应用[J]. 钻井液与完井液, 2013, 30(1): 69-71, 74.
|
|
[CAI B, ZHANG Y M, JIN F M, et al. Research on acid fracturing system with improving stimulated reservoir volume[J]. Drilling Fluid & Completion Fluid, 2013, 30(1): 69-71, 74.]
|
[19] |
焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.
|
|
[JIAO F Z. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216.]
|
[20] |
张以明, 才博, 何春明, 等. 超高温超深非均质碳酸盐岩储层地质工程一体化体积改造技术[J]. 石油学报, 2018, 39(1): 92-100.
doi: 10.7623/syxb201801008
|
|
[ZHANG Y M, CAI B, HE C M, et al. Volume fracturing technology based on geo-engineering integration for ultra-high temperature and ultra-deep heterogeneous carbonate reservoir[J]. Acta Petrolei Sinica, 2018, 39(1): 92-100.]
doi: 10.7623/syxb201801008
|
[21] |
ABHISHEK S, AHMED F I, HISHAM N E, et al. A novel cationic polymer system that improves acid diversion in heterogeneous carbonate reservoirs[C]. SPE 194647, 2019.
|
[22] |
蒋其辉, 杨向同, 龚福忠. 耐高温交联酸压裂液的研制及其性能评价[J]. 化学工业与工程, 2022, 39(1): 51-57.
|
|
[JIANG Q H, YANG X T, GONG F Z, et al. Development and evaluation of high temperature resistant cross-linked acid fracturing fluid system[J]. Chemical Industry and Engineering, 2022, 39(1): 51-57.]
|
[23] |
巩锦程, 王彦玲, 罗明良, 等. 交联酸压裂液体系研究进展及展望[J]. 应用化工, 2020, 49(8): 2058-2062.
|
|
[GONG J C, WANG Y L, LUO M L, et al. Research and prospect of crosslinked acid fracturing fluid[J]. Applied Chemical Industry, 2020, 49(8): 2058-2062.]
|
[24] |
LV Q, LI Z, LI B, et al. Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid[J]. Industrial & Engineering Chemistry Research, 2015, 54(38): 9468-9477.
|
[25] |
孙亚东, 杨立, 李新亮. 高温酸化杂化胶凝剂的研制与性能评价[J]. 油田化学, 2023, 40(2): 223-228.
|
|
[SUN Y D, YANG L, LI X L. Development and performance evaluation of hybrid gelling agent for acidification at high temperature[J]. Oilfield Chemistry, 2023, 40(2): 223-228.]
|
[26] |
李晖, 罗斌, 李钦, 等. 耐高温酸液胶凝剂的制备及性能评价[J]. 油田化学, 2022, 39(4): 589-594.
|
|
[LI H, LUO B, LI Q, et al. Preparation and performance evaluation of acid gelling agent with high temperature resistance[J]. Oilfield Chemistry, 2022, 39(4): 589-594.]
|
[27] |
王萌, 车明光, 周长林, 等. 一种新型耐高温碳酸盐岩酸压胶凝酸及其应用[J]. 钻井液与完井液, 2020, 37(5): 670-676.
|
|
[WANG M, CHE M G, ZHOU C L, et al. A novel gelled acid for the acid fracturing of the high-temperature carbonates and its application[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 670-676.]
|
[28] |
PRIYANK M, JASON M, VEMURI B. Reactive-dissolution modeling and experimental comparison of wormhole formation in carbonates with gelled and emulsified acid[J]. SPE Production & Operations, 2016, 31(2): 103-119.
|
[29] |
蔡振忠, 徐帆, 杨果, 等. 塔里木盆地下寒武统玉尔吐斯组沉积特征及有机质富集模式[J]. 现代地质, 2024, 38(5): 1258-1269.
|
|
[CAI Z Z, XU F, YANG G, et al. Sedimentary characteristics of the lower Cambrian Yuertusi Formation and the organic matter enrichment model in the Tarim Basin[J]. Geoscience, 2024, 38(5): 1258-1269.]
|
[30] |
雷群, 管保山, 才博, 等. 储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2019, 46(3): 168-175.
|
|
[LEI Q, GUAN B S, CAI B, et al. Technological process and prospect of reservoir stimulation[J]. Petroleum Exploration and Development, 2019, 46(3): 168-175.]
|
[31] |
刘洪涛, 刘举, 刘会锋, 等. 塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J]. 天然气工业, 2020, 40(11): 76-88.
|
|
[LIU H T, LIU J, LIU H F, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim Basin[J]. Natural Gas Industry, 2020, 40(11): 76-88.]
|
[32] |
江同文, 滕学清, 杨向同. 塔里木盆地克深8超深超高压裂缝性致密砂岩气藏快速、高效建产配套技术[J]. 天然气工业, 2016, 36(10): 1-9.
|
|
[JIANG T W, TENG X Q, YANG X T. Integrated techniques for rapid and highly-efficient development and production of ultra-deep tight sand gas reservoirs of Keshen 8 Block in the Tarim Basin[J]. Natural Gas Industry, 2016, 36(10): 1-9.]
|
[33] |
付海峰, 刘云志, 梁天成, 等. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
doi: 10.11764/j.issn.1672-1926.2016.12.2231
|
|
[FU H F, LIU Y Zi, LIANG T C, et al. Laboratory study on hydraulic fracture geometry of Longmaxi Formation shale in Yibin area of Sichuan Province[J]. Natural Gas Geoscience, 2016, 27(12): 2231-2236.]
|
[34] |
雷群, 胥云, 蒋廷学, 等. 用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J]. 石油学报, 2009, 30(2): 237-241.
doi: 10.7623/syxb200902013
|
|
[LEI Q, XU Y, JIANG T X, et al. “Fracture network” fracturing technique for improving post-fracturing performance of low and ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2009, 30(2): 237-241.]
doi: 10.7623/syxb200902013
|
[35] |
杨战伟, 胥云, 程兴生, 等. 水力喷射酸压技术在轮南碳酸盐岩水平井中的应用[J]. 钻采工艺, 2012, 35(1): 49-51.
|
|
[YANG Z W, XU Y, CHENG X S, et al. Research and application of hydraulic jetting and acid fracturing technology in horizontal well of Lunnan carbonate formation[J]. Drilling and Production Technology, 2012, 35(1): 49-51.]
|
[36] |
戴一凡, 侯冰. 碳酸盐岩酸蚀裂缝面粗糙度与导流能力相关性分析[J]. 断块油气田, 2023, 30(4): 672-677.
|
|
[DAI Y F, HOU B. Correction analysis between acid-etched fracture surface roughness and fracture conductivity in carbonate reservoir[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 672-677.]
|
[37] |
苟申延, 王世彬, 郭凌峣, 等. 交替注入工艺对深层海相碳酸盐岩酸蚀裂缝导流能力的影响研究[J]. 钻采工艺, 2023, 46(2): 94-99.
|
|
[GOU S Y, WANG S B, GUO L Y, et al. Influence of alternate injection process on conductivity of acid-etched fractures in deep marine carbonate rocks[J]. Drilling & Production Technology, 2023, 46(2): 94-99.]
|
[38] |
李小刚, 秦杨, 朱静怡, 等. 自生酸酸液体系研究进展及展望[J]. 特种油气藏, 2022, 29(6): 1-10.
doi: 10.3969/j.issn.1006-6535.2022.06.001
|
|
[LI X G, QIN Y, ZHU J Y, et al. Research progress and prospect of autogenic acid system[J]. Special Oil & Gas Reservoirs, 2022, 29(6): 1-10.]
|
[39] |
GAO Y, LIAN S Q, SHI Y, et al. A new acid fracturing fluid system for high temperature deep well carbonate reservoir[C]// SPE Asia Pacific Hydraulic Fracturing Conference. SPE 181823, Beijing, China, 2016-08-24.
|
[40] |
LI N Y, DAI Ji X, LIU P L, et al. Experimental study on influencing factors of acid-fracturing effect for carbonate reservoirs[J]. Petroleum, 2015, 1(2): 146-153.
|
[41] |
刘建坤, 蒋廷学, 吴春方, 等. 致密砂岩交替注酸压裂工艺技术[J]. 特种油气藏, 2017, 24(5): 150-155.
|
|
[LIU J K, JIANG T X, WU C F, et al. Alternate acid injection fracturing technology for tight sandstone reservoirs[J]. Special Oil & Gas Reservoirs, 2017, 24(5): 150-155.]
|
[42] |
郭建春, 苟波, 陆灯云, 等. 深层碳酸盐岩储层酸压进展与展望[J]. 钻采工艺, 2024, 47(2): 121-129.
doi: 10.3969/J.ISSN.1006-768X.2024.02.14
|
|
[GUO J C, GOU B, LU D Y, et al. Advance and prospect of acid fracturing in deep carbonate reservoirs[J]. Drilling & Production Technology, 2024, 47(2): 121-129.]
|
[43] |
郭建春, 管晨呈, 李骁, 等. 四川盆地深层含硫碳酸盐岩储层立体酸压核心理念与关键技术[J]. 天然气工业, 2023, 43(9): 14-24.
|
|
[GUO J C, GUAN C C, LI X, et al. Core concept and key technology of three-dimensional acid-fracturing technology for deep carbonate reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2023, 43(9): 14-24.]
|
[44] |
GUO Y T, HOU L F, YAO Y M, et al. Experimental study on influencing factors of fracture propagation in fractured carbonate rocks[J]. Journal of Structural Geology, 2020, 131: 103955.
|
[45] |
GOU B, ZHAN L, GUO J C, et al. Effect of different types of stimulation fluids on fracture propagation behavior in naturally fractured carbonate rock through CT scan[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108529.
|
[46] |
WANG L W, CAI B, QIU X H, et al. A case study: Field application of ultra-high temperature fluid in deep well[R]. SPE 180546, 2016.
|
[47] |
程正华, 艾池, 张军, 等. 胶结型天然裂缝对水力压裂裂缝延伸规律的影响[J]. 新疆石油地质, 2022, 43(4): 433-439.
|
|
[CHENG Z H, AI C, ZHANG J, et al. Influences of cemented natural fractures on propagation of hydraulic fractures[J]. Xinjiang Petroleum Geology, 2022, 43(4): 433-439.]
|
[48] |
程万, 金衍, 陈勉, 等. 三维空间中水力裂缝穿透天然裂缝的判别准则[J]. 石油勘探与开发, 2014, 41(3): 2-10.
|
|
[CHENG W, JIN Y, CHEN M, et al. A criterion for identifying hydraulic fractures crossing natural fractures in 3D space[J]. Petroleum Exploration and Development, 2014, 41(3): 2-10.]
|
[49] |
戴彩丽, 黄永平, 刘长龙, 等. 深层/超深层冻胶压裂液体系研究进展及展望[J]. 中国石油大学学报(自然科学版), 2023, 47(4): 77-92.
|
|
[DAI C L, HUANG Y P, LIU C L, et al. Progress and prospect of fracturing fluid system for deep/ultra-deep reservoir reconstruction[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(4): 77-92.]
|
[50] |
周建平, 杨战伟, 徐敏杰, 等. 工业氯化钙加重胍胶压裂液体系研究与现场试验[J]. 石油钻探技术, 2021, 49 (2): 96-101.
|
|
[ZHOU J P, YANG Z W, XU M J, et al. Research and field tests of weighted fracturing fluids with industrial calcium chloride and guar gum[J]. Petroleum Drilling Techniques, 2021, 49 (2): 96-101.]
|