[1] |
李阳, 王延光, 刘浩杰, 等. 中国石化油藏地球物理二十年发展与思考[J]. 石油物探, 2024, 63(1): 1-11.
doi: 10.12431/issn.1000-1441.2024.63.01.001
|
|
[LI Y, WANG Y G, LIU H J, et al. Development and perspective of reservoir geophysics in Sinopec in the past 20 years[J]. Geophysical Prospecting for Petroleum, 2024, 63(1): 1-11.]
doi: 10.12431/issn.1000-1441.2024.63.01.001
|
[2] |
陈筱, 杨希濮, 肖鹏, 等. 时移地震技术在油藏监测中的应用——以西非深水扇A油田为例[J]. 石油物探, 2023, 62(3): 538-547.
doi: 10.12431/issn.1000-1441.2023.62.03.015
|
|
[CHEN X, YANG X P, XIAO P, et al. Application of time-lapse seismic technology in deepwater turbidite reservoir monitoring: A case study of the deepwater fan A oilfield in West Africa[J]. Geophysical Prospecting for Petroleum, 2023, 62(3): 538-547.]
doi: 10.12431/issn.1000-1441.2023.62.03.015
|
[3] |
芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
|
|
[RUI Y J, SHANG X M. Exploration and practice of non-uniform time-lapse seismic key technology in Shengli Oilfield[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1439-1447.]
|
[4] |
徐长贵. 中国近海油气勘探新进展与勘探突破方向[J]. 中国海上油气, 2022, 34(1): 9-16.
|
|
[XU C G. New progress and breakthrough directions of oil and gas exploration in China offshore area[J]. China Offshore Oil and Gas, 2022, 34(1): 9-16.]
|
[5] |
尚锁贵, 高科超, 高强勇, 等. 渤海海域浅层岩性油藏勘探作业技术进展[J]. 中国海上油气, 2024, 36(4): 107-118.
|
|
[SHANG S G, GAO K C, GAO Q Y, et al. Progress of exploration operation technologies for shallow lithologic reservoirs in Bohai Sea[J]. China Offshore Oil and Gas, 2024, 36(4): 107-118.]
|
[6] |
赵伟. 中国海上时移地震技术应用的可行性研究[J]. 勘探地球物理进展, 2003, 26(1): 30-34.
|
|
[ZHAO W, Feasibility study on timelapse seismic offshore China[J]. Progress in Exploration Geophysics, 2003, 26(1): 30-34.]
|
[7] |
朱振宇, 赵伟. 中国海上时移地震可行性分析[C]. 中国地球物理学会、中国地震学会, 浙江, 2010.
|
|
[ZHU Z Y, ZHAO W. Feasibility study on timelapse seismic offshore China[C]. CGS&SSOC, Zhejiang, 2010.]
|
[8] |
李景叶, 陈小宏. 时移地震油藏监测可行性分析评价技术[J]. 石油物探, 2012, 51(2): 125-132+103.
doi: 10.3969/j.issn.1000-1441.2012.02.003
|
|
[LI J Y, CHEN X H. Feasibility analysis and evaluation technology of time-lapse seismic reservoir monitoring[J]. Geophysical Prospecting for Petroleum, 2012, 51(2): 125-132+103.]
doi: 10.3969/j.issn.1000-1441.2012.02.003
|
[9] |
周水生, 刘洪, 王冲. 基于岩石物理实验的时移地震研究[J]. 地球物理学进展, 2013, 28(4): 1739-1748.
|
|
[ZHOU S S, LIU H, WANG C. A study of time-lapse seismic based on rock physics experiment[J]. Progress in Geophysics, 2013, 28(4): 1739-1748.]
|
[10] |
ZHANG J J, YIN X Y, GU Y P, et al. Sandstone reservoir rock physics modeling and time-lapse seismic analysis[J]. Journal of Applied Geophysics, 2024, 222: 105318.
|
[11] |
SENGUPTA M, GHOSH R. A rock physics modelling approach for time-lapse monitoring and characterization of fluid-rock interactions in hydrocarbon reservoirs[J]. Geophysical Prospecting, 2025, 73(4): 994-1007.
|
[12] |
ZHENG Y K, WANG C, LIANG H H, et al. 3D seismic forward modeling from the multiphysical inversion at the ketzin CO2 storage site[J]. Applied Geophysics, 2024, 21(3): 593-605.
|
[13] |
刘巍, 邓海东, 张亮, 等. 时移地震采集时机可行性分析及研究——以南海l气田为例[J]. 石油物探, 2022, 61(3): 490-498.
doi: 10.3969/j.issn.1000-1441.2022.03.011
|
|
[LIU W, DENG H D, ZHANG L, et al. Feasibility study of time-lapse seismic acquisition timing: A case study in the L gas field[J]. Geophysical Prospecting for Petroleum, 2022, 61(3): 490-498.]
doi: 10.3969/j.issn.1000-1441.2022.03.011
|
[14] |
TOH S Y, MACBETH C. Feasibility of seismic monitoring of CCS in the north sea[C]. EAGE Workshop on Unlocking Carbon Capture and Storage Potential, Malaysia, 2023.
|
[15] |
SINHA M, SAYGIN E, ROSS A S, et al. Seismic monitoring of CCS with active and passive data: A synthetic feasibility study based on pelican site, Australia[J]. International Journal of Greenhouse Gas Control, 2024, 139: 104277.
|
[16] |
印兴耀, 刘欣欣. 储层地震岩石物理建模研究现状与进展[J]. 石油物探, 2016, 55(3): 309-325.
doi: 10.3969/j.issn.1000-1441.2016.03.001
|
|
[YIN X Y, LIU X X. Research status and progress of the seismic rock-physics modeling methods[J]. Geophysical Prospecting for Petroleum, 2016, 55(3): 309-325.]
doi: 10.3969/j.issn.1000-1441.2016.03.001
|
[17] |
周东红, 段新意. 浅水环境下气云发育区高孔低胶结地层地震资料成像策略研究——以渤海莱北地区a油田为例[J]. 石油物探, 2023, 62(1): 105-118.
doi: 10.3969/j.issn.1000-1441.2023.01.009
|
|
[ZHOU D H, DUAN X Y. Seismic data imaging strategy of high-porosity and low-cementation strata in the gas cloud development area of a shallow water environment: Case study of an oilfield in the Bohai Laibei Area[J]. Geophysical Prospecting for Petroleum. 2023, 62(1): 105-118.]
doi: 10.3969/j.issn.1000-1441.2023.01.009
|
[18] |
邓继新, 韩德华, 王尚旭. 未固结砂岩地震弹性性质的岩石物理模型表征研究[J]. 石油地球物理勘探, 2010, 45(2): 248-257.
|
|
[DENG J X, HAN D H, WANG S X. Rock physics modeling characteristic studies on seismic elastic properties of unconsolidated sandstone[J]. Oil Geophysical Prospecting, 2010, 45(2): 248-257.]
|
[19] |
KHADEM B, SABERI M R, AVSETH P. Rock physics of sand-shale mixtures: Classifications, theoretical formulations and study on real dataset[J]. Marine and Petroleum Geology, 2021, 134: 105366.
|
[20] |
AVSETH P, JOHANSEN T A, BAKHORJI A, et al. Rock-physics modeling guided by depositional and burial history in low-to-intermediate-porosity sandstones[J]. Geophysics, 2014, 79(2): D115-D121.
|
[21] |
MAKARIAN E, ELYASI A, MOGHADAM R H, et al. Rock physics-based analysis to discriminate lithology and pore fluid saturation of carbonate reservoirs: A case study[J]. Acta Geophysica, 2023, 71(5): 2163-2180.
|
[22] |
PANG M Q, BA J, DENG J X, et al. Rock-physics template based on differential diagenesis for the characterization of shale gas reservoirs[J]. Arabian Journal for Science and Engineering, 2023, 48(1): 677-693.
|
[23] |
HUSSAIN W, LUO M, ALI M, et al. Rock physics modeling to evaluate clastic reservoirs: A case study from the lower Goru Formation, middle Indus Basin, Pakistan[J]. Environmental Earth Sciences, 2024, 83(12): 383.
|
[24] |
YUAN H M, HAN D H, WANG Y. A review of rock physical models for elastic properties characterization of gas hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering, 2022, 218: 111013.
|
[25] |
韩旭, 王尚旭, 刘浩杰, 等. 基于孔隙纵横比谱反演的饱和岩石宽频段岩石物理模型[J]. 石油科学通报, 2022, 7(3): 334-342.
|
|
[HAN X, WANG S X, LIU H J, et al. Multi-frequency band rock physics model for saturated rock based on pore aspect ratio spectral inversion[J]. Petroleum Science Bulletin, 2022, 7(3): 334-342.]
|
[26] |
BJØRLYKKE K. Petroleum geoscience: From sedimentary environments to rock physics[M]. Berlin:Springer, 2015.
|
[27] |
汤良杰, 万桂梅, 周心怀, 等. 渤海盆地新生代构造演化特征[J]. 高校地质学报, 2008, (2): 191-198.
|
|
[TANG L J, WAN G M, ZHOU X H, et al. Cenozoic geotectonic evolution of the Bohai Basin[J]. Geological Journal of China Universities, 2008, (2): 191-198.]
|
[28] |
彭波, 邹华耀. 渤海盆地现今岩石圈热结构及新生代构造-热演化史[J]. 现代地质, 2013, 27(6): 1399-1406.
|
|
[PENG B, ZOU H Y. Present day geothermal structure of lithosphere and the Cenozoic tectono thermal evolution of Bohai Basin[J]. Geoscience, 2013, 27(6): 1399-1406.]
|
[29] |
LEHOCKI I, AVSETH P. From cradle to grave: How burial history controls the rock-physics properties of quartzose sandstones[J]. Geophysical Prospecting, 2021, 69(3): 629-649.
|
[30] |
OLAV WALDERHAUG. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs[J]. AAPG Bulletin, 1996, 80.
|
[31] |
YU J, DUFFAUT K, AVSETH P. Understanding the synergistic impact of stress release and cementation on sandstone using sound waves: Implications for exhumation estimation[J]. Geophysics, 2023, 88(6): MR333-MR349.
|
[32] |
YU J, AVSETH P, DUFFAUT K. Effects of overconsolidation on seismic rock physics: A comparative study between unconsolidated sands and weakly cemented sandstone[J]. Geophysics, 2025, 90(1): MR1-MR12.
|
[33] |
NUR A, MAVKO G, DVORKIN J, et al. Critical porosity: A key to relating physical properties to porosity in rocks[J]. The Leading Edge, 1998, 17(3): 357-362.
|
[34] |
MINDLIN R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949, 16(3): 259-268.
|
[35] |
AVSETH P, MAVKO G, DVORKIN J, et al. Rock physics and seismic properties of sands and shales as a function of burial depth[C]. SEG Exposition and Annual Meeting, Texas, 2001.
|
[36] |
DVORKIN J, NUR A, YIN H. Effective properties of cemented granular materials[J]. Mechanics of Materials, 1994, 18(4): 351-366.
|
[37] |
DVORKIN J, NUR A. Elasticity of high-porosity sandstones: Theory for two North Sea data sets[J]. Geophysics, 1996, 61(5): 1363-1370.
|
[38] |
BATZLE M, WANG Z. Seismic properties of pore fluids[J]. Geophysics, 1992, 57(11): 1396-1408.
|
[39] |
WOOD A B, LINDSAY R B. A textbook of sound[J]. Physics Today, 1956, 9(11): 37-37.
|
[40] |
肖云飞, 殷厚成, 孙成禹, 等. 基于随机介质模型的近地表波场模拟及分析[J]. 石油物探, 2011, 50(4): 336-344+23.
doi: 10.3969/j.issn.1000-1441.2011.04.004
|
|
[XIAO Y F, YIN H C, SUN C Y, et al. Near-surface wave field simulation and analysis based on random media models[J]. Geophysical Prospecting for Petroleum, 2011, 50(4): 336-344+23.]
doi: 10.3969/j.issn.1000-1441.2011.04.004
|
[41] |
丁超, 马坚伟. 基于弹性反射波正演表达的转换波逆时偏移与反偏移[J]. 地球物理学报, 2024, 67(9): 3496-3509.
|
|
[DING C, MA J W. Converted wave reverse time migration and demigration based on forward expression of elastic reflected waves[J]. Chinese Journal of Geophysics, 2024, 67(9): 3496-3509.]
|
[42] |
朱振宇, 王小六, 何洋洋, 等. 海上时移地震关键技术研究与应用[J]. 中国海上油气, 2018, 30(4): 76-85.
|
|
[ZHU Z Y, WANG X L, HE Y Y, et al. Research and application of key marine time-lapse seismic technologies[J]. China Offshore Oil and Gas, 2018, 30(4): 76-85.]
|
[43] |
WIDESS M B. How thin is a thin bed?[J]. Geophysics, 1973, 38(6): 1176-1180.
|