中国科技核心期刊
(中国科技论文统计源期刊)
  Scopus收录期刊

石油科学通报 ›› 2025, Vol. 10 ›› Issue (6): 1252-1266. doi: 10.3969/j.issn.2096-1693.2025.02.032

• • 上一篇    下一篇

石油钻井钻速预测研究现状与未来展望

裴志君1,2(), 宋先知2,*(), 李根生2   

  1. 1 西南石油大学石油与天然气工程学院油气藏地质及开发工程全国重点实验室成都 610500
    2 中国石油大学(北京)石油工程学院油气资源与工程全国重点实验室北京 102249
  • 收稿日期:2024-11-26 修回日期:2025-05-06 出版日期:2025-12-30 发布日期:2025-12-30
  • 通讯作者: *宋先知(1982年—),工学博士,教授、博士生导师,主要从事智能钻完井工作,songxz@cup.edu.cn
  • 作者简介:裴志君(1994年—),工学博士,博士后、讲师,主要从事智能钻完井、二氧化碳封存、井筒完整性评估与管控等工作,pzj0227@163.com
  • 基金资助:
    国家杰出青年科学基金项目“油气井流体力学与工程”(52125401);国家资助博士后研究人员计划(GZC20251947);中国石油—西南石油大学创新联合体支持交叉学科发展“揭榜挂帅”项目“深井减振与提速智能协同作用理论研究”(2024CXJB03)

Research status and future prospect of penetration rate prediction for petroleum drilling

PEI Zhijun1,2(), SONG Xianzhi2,*(), LI Gensheng2   

  1. 1 State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    2 State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China
  • Received:2024-11-26 Revised:2025-05-06 Online:2025-12-30 Published:2025-12-30

摘要:

机械钻速预测对钻井工程意义重大,可为钻井优化、资源分配、安全保障等提供重要参考依据。近年来,人工智能掀起新一轮智能化变革热潮,推动了钻井工程的智能化转型升级,涌现出了一大批新兴钻速预测方法,但当前尚缺乏对这些钻速预测新方法的系统性总结和分析。本文通过对国内外主要钻速预测模型和方法的系统调研和提炼,归纳总结了显式钻速方程、数值模拟仿真和人工智能模型3类钻速预测方法的发展背景和理论原理,深入剖析了各类钻速预测方法在实际应用中面临的关键技术难题和挑战,并指出机理与数据融合的钻速预测方法是突破现有瓶颈的重要方向,也是未来技术发展的主流趋势。在此基础上,结合智能钻井发展趋势和钻速预测模型主要卡点,提出了5个未来的发展方向:①自动化、智能化钻井装备;②钻速预测专用的机理与数据融合模型;③基于具身智能、群体智能、强化学习和在线学习的钻速预测模型环境响应机制;④基于大模型和迁移学习算法的通用钻速智能预测模型;⑤基于科学知识发现的钻速预测模型闭环优化。

关键词: 机械钻速, 智能钻井, 神经网络, 知识约束, 混合模型

Abstract:

Rate of penetration (ROP) prediction is of great significance to drilling engineering and can provide important reference basis for drilling optimization, resource allocation, safety guarantee. In recent years, artificial intelligence has sparked a new round of intelligent transformation, promoting the intelligent transformation and upgrading of drilling engineering and giving rise to a large number of new ROP prediction methods. However, there is still a lack of systematic summary and analysis of these new ROP prediction methods at present. This paper, through systematic research and refinement of the main ROP prediction models and methods at home and abroad, summarizes and expounds the development background and theoretical principles of three types of ROP prediction methods: explicit ROP equation, numerical simulation, and artificial intelligence model. It also deeply analyzes the key technical problems and challenges faced by various ROP prediction methods in practical applications at present. It is also pointed out that the ROP prediction method integrating mechanism and data is an important direction to break through the existing bottlenecks and also the mainstream trend of future technological development. Based on this, combined with the development trend of intelligent drilling and the main bottlenecks of the ROP prediction model, five future development directions are proposed: ① Automated and intelligent drilling equipment; ② A dedicated mechanism and data fusion model for ROP prediction; ③ Environmental response mechanism of ROP prediction model based on embodied intelligence, swarm intelligence, reinforcement learning and online learning; ④ A general ROP intelligent prediction model based on large models and transfer learning algorithms; ⑤ Closed-loop optimization of ROP prediction model based on scientific knowledge discovery.

Key words: rate of penetration, intelligent drilling, neural network, knowledge constraint, intelligent hybrid model

中图分类号: