| [1] |
王作乾, 范喆, 陈希, 等. 2023年度全球油气开发现状、形势及启示[J]. 石油勘探与开发, 2024, 51(06): 1331-46.
|
|
[WANG Z G, FAN Z, CHEN X, et al. Global oil and gas development situation, trends and enlightenment in 2023[J]. Petroleum Exploration and Development, 2024, 51(06): 1331-46.]
|
| [2] |
宋先知, 李根生, 祝兆鹏, 等. 钻井数字孪生技术研究现状及发展趋势[J]. 石油钻探技术, 2024, 52(05): 10-9+171.
|
|
[SONG X Z, LI G S, ZHU ZP, et al. Research status and development trend of drilling digital twin technology[J]. Petroleum Drilling Techniques, 2024, 52(05): 10-9+171.]
|
| [3] |
刘书杰, 吴怡, 谢仁军, 等. 深水深层井钻井关键技术发展与展望[J]. 石油钻采工艺, 2021, 43(02): 139-45.
|
|
[LIU S J, WU Y, XIE R J, et al. Development and prospect of the key technologies for the drilling of deep wells in deep water[J]. Oil Drilling & Production Technology, 2021, 43(02): 139-45.]
|
| [4] |
裴志君, 宋先知, 王潘涛, 等. 基于支持向量机回归的机械钻速智能预测[J]. 新疆石油天然气, 2022, 18(1): 14-20.
doi: 10.12388/j.issn.1673-2677.2022.01.002
|
|
[PEI Z J, SONG X Z, WANG P T, et al. Intelligent prediction for rate of penetration based on support vector machine regression[J]. Xinjiang Oil&Gas, 2022, 18(1): 14-20.]
|
| [5] |
林元华, 宗玉宇, 梁政, 等. 石油钻井机械钻速预测研究进展[J]. 石油钻探技术, 2004, (01): 10-3.
|
|
[LIN Y H, ZONG Y Y, LIANG Z, et al. The developments of rop prediction for oil drilling[J]. Petroleum Drilling Techniques, 2004, (01): 10-3.]
|
| [6] |
WINTERS W J, WARREN T M, ONYIA E C. Roller bit model with rock ductility and cone offset; Proceedings of the SPE Annual Technical Conference and Exhibition, F, 1987[C]. SPE-16696-MS.
|
| [7] |
LI G, SONG X, TIAN S, et al. Intelligent drilling and completion: a review[J]. Engineering, 2022, 18: 33-48.
|
| [8] |
CUNNINGHAM R. Laboratory studies of the effect of rotary speed on rock-bit performance and drilling cost[J]. Drilling and Production Practice, 1960.
|
| [9] |
GALLE E, WOODS H. Best constant weight and potary speed for rotary rock bits[J]. Drilling and Production Practice, 1963.
|
| [10] |
WALKER B H, BLACK A D, KLAUBER W P, et al. Roller-bit penetration rate response as a function of rock properties and well depth; Proceedings of the SPE Annual Technical Conference and Exhibition, F, 1986[C]. SPE-15620-MS.
|
| [11] |
AL-BETAIRI E A, MOUSSA M M, AL-OTAIBI S. Multiple regression approach to optimize drilling operations in the arabian gulf area[J]. SPE Drilling Engineering, 1988, 3(01): 83-8.
doi: 10.2118/13694-PA
URL
|
| [12] |
郭永峰. 用回归分析法预测钻头最佳进尺及钻速[J]. 石油钻采工艺, 1994, (01): 24-6+80-99.
|
|
[GUO Y F. The optimal footage and drilling rate of the drill bit are predicted by regression analysis method[J]. Oil Drilling & Production Technology, 1994, (01): 24-6+80-99.]
|
| [13] |
HARTMAN H L. Basic studies of percussion drilling[J]. Min Eng, 1959, 11(1).
|
| [14] |
FAIRHURST C, LACABANNE W. Some principles and developments in hard rock drilling techniques[J]. Drilling and Production Practice, 1956.
|
| [15] |
许争鸣. 深层高温高压钻井环空气液固三相流动规律研究[D]. 中国石油大学(北京), 2021.
|
|
[XV Z M. Study on the flowing characteristics of gas-liquid-solid in annulus during high-temperature and high-pressure deep well drilling[D]. China University of Petroleum, Beijing, 2024.]
|
| [16] |
YOUNG F. Computerized drilling control[J]. Journal of Petroleum Technology, 1969, 21(04): 483-96.
doi: 10.2118/2241-PA
URL
|
| [17] |
BOURGOYNE A T JR., YOUNG F S JR. A multiple regression approach to optimal drilling and abnormal pressure detection[J]. Society of Petroleum Engineers Journal, 1974, 14(04): 371-84.
doi: 10.2118/4238-PA
URL
|
| [18] |
WIKTORSKI E, KUZNETCOV A, SUI D. ROP optimization and modeling in directional drilling process; Proceedings of the SPE Bergen One Day Seminar, F, 2017[C]. D011S003R002.
|
| [19] |
REN C, HUANG W, GAO D. Predicting rate of penetration of horizontal drilling by combining physical model with machine learning method in the china jimusar oil field[J]. SPE Journal, 2022: 1-24.
|
| [20] |
ETESAMI D G. SHIRANGI M, ZHANG W J. A semiempirical model for rate of penetration with application to an offshore gas field[J]. SPE Drilling & Completion, 2021, 36(01): 29-46.
|
| [21] |
WEI L, TIE Y, XINGHUA X, et al. Research on PDC bit drilling rate equation in daqing medium-deep well based on rock breaking experiments by PDC bit[J]. The Open Petroleum Engineering Journal, 2015, 8(1).
|
| [22] |
MORAVEJI M K, NADERI M. Drilling rate of penetration prediction and optimization using response surface methodology and bat algorithm[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 829-41.
doi: 10.1016/j.jngse.2016.03.057
URL
|
| [23] |
SOARES C, ARMENTA M, PANCHAL N. Enhancing reamer drilling performance in deepwater gulf of mexico wells[J]. SPE Drilling & Completion, 2020, 35(03): 329-56.
|
| [24] |
MAZEN A Z, RAHMANIAN N, MUJTABA I, et al. Prediction of penetration rate for pdc bits using indices of rock drillability, cuttings removal, and bit wear[J]. SPE Drilling & Completion, 2021, 36(02): 320-37.
|
| [25] |
李根生, 穆总结, 田守嶒, 等. 冲击破岩钻井提速技术研究现状与发展建议[J]. 新疆石油天然气, 2024, 20(01): 1-12.
|
|
[LI G S, MU Z J, TIAN S C, et al. Research status and development proposal of rop improvement technology with percussion rock-breaking method[J]. Xinjiang Oil&Gas, 2024, 20(01): 1-12.]
|
| [26] |
闫炎, 韩礼红, 刘永红, 等. 全尺寸PDC钻头旋转冲击破岩过程数值模拟[J]. 石油机械, 2023, 51(06): 36-42.
|
|
[YAN Y, HAN L H, LIU Y H, et al. Numerical simulation of rotary impact rock-breaking process of a full-size drill bit[J]. China Petroleum Machinery, 2023, 51(06): 36-42. ]
|
| [27] |
吴泽兵, 袁若飞, 张文溪, 等. PDC混合布齿钻头破碎非均质花岗岩数值模拟[J]. 天然气工业, 2024, 44(05): 105-17.
|
|
[LV Z B, YUAN R F, ZHANG W X, et al. Numerical simulation of breaking heterogeneous granite with PDC mixed-tooth bits[J]. Natural Gas Industry, 2024, 44(05): 105-17.]
|
| [28] |
ROBERTS T, HæREID O. New generation thermally stable cutters deliver high penetration rates while maintaining durability in the Troll Field, Norway; Proceedings of the SPE/IADC Drilling Conference and Exhibition, F, 2013[C]. SPE.
|
| [29] |
WEAVER G, CLAYTON R. A new PDC cutting structure improves bit stabilization and extends application into harder rock types; Proceedings of the SPE/IADC Drilling Conference and Exhibition, F, 1993[C]. SPE.
|
| [30] |
吴彬摘, 周永霞. 横向喷射水力学与椭圆切削齿技术相结合提高PDC钻头性能[J]. 国外石油机械, 1998, (02): 19-24.
|
|
[WU B Z, ZHOU Y X. The combination of lateral jet hydraulics and elliptical cutting tooth technology enhances the performance of PDC bits[J]. Foreign Petroleum Machinery, 1998, (02): 19-24.]
|
| [31] |
IZBINSKI K, PATEL S G, VANDEVEN A. Innovative dual-chamfer edge technology leads to performance gains in PDC bits; Proceedings of the SPE/IADC Drilling conference and Exhibition, F, 2015[C]. SPE.
|
| [32] |
ZHANG Z, ZHAO D, ZHAO Y, et al. 3D numerical simulation study of rock breaking of the wavy PDC cutter and field verification[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108578.
doi: 10.1016/j.petrol.2021.108578
URL
|
| [33] |
刘建华, 令文学, 王恒. 非平面三棱形PDC齿破岩机理研究与现场试验[J]. 石油钻探技术, 2021, 49(05): 46-50.
|
|
[LIU J H, LING W X, WANG H. Study on Rock breaking mechanism and field test of triangular prismatic pdc cutters[J]. Petroleum Drilling Techniques, 2021, 49(05): 46-50.]
|
| [34] |
LUBINSKI A, ALTHOUSE W. Helical buckling of tubing sealed in packers[J]. Journal of Petroleum Technology, 1962, 14(06): 655-70.
doi: 10.2118/178-PA
URL
|
| [35] |
DAWSON R. Drill pipe buckling in inclined holes[J]. Journal of Petroleum Tehnology, 1984, 36(10): 1734-8.
|
| [36] |
高德利, 高宝奎, 耿瑞平. 钻柱涡动特性分析[J]. 石油钻采工艺, 1996, (06): 9-13+96.
|
|
[GAO D L, GAO B K, GENG R P. Analysis of vortex characteristics of drill string[J]. Oil Drilling & Production Technology, 1996, (06): 9-13+96.]
|
| [37] |
FINNIE I, BAILEY J. An experimental study of drill-string vibration[J]. Journal of Engineering for Industry, 1960, 82(2): 129.
doi: 10.1115/1.3663020
URL
|
| [38] |
DAWSON R, LIN Y, SPANOS P. Drill string stick-slip oscillations; Proceedings of the Spring Conference of the Society for Experimental Mechanics, Houston, Texas, F, 1987[C].
|
| [39] |
DAILY J, RING L, HAJIANMALEKI M, et al. Critical buckling load assessment of drill strings in different wellbores using the explicit finite element method; Proceedings of the SPE Offshore Europe Oil and Gas Conference and Exhibition, Aberdeen, UK SPE-166592-MS, F, 2013[C].
|
| [40] |
SIFFERMAN T R, MYERS G M, HADEN E L, et al. Drill cutting transport in full scale vertical annuli[J]. Journal of Petroleum Technology, 1974, 26(11): 1295-302.
doi: 10.2118/4514-PA
URL
|
| [41] |
TOMREN P, LYOHO A, AZAR J. Experimental study of cuttings transport in directional wells[J]. SPE Drilling Engineering, 1986, 1(01): 43-56.
doi: 10.2118/12123-PA
URL
|
| [42] |
BILGESU H, ALI M, AMINIAN K, et al. Computational fluid dynamics (CFD) as a tool to study cutting transport in wellbores; Proceedings of the SPE Eastern Regional Meeting, F, 2002[C]. SPE.
|
| [43] |
MENDOZA J A, GAMWO I K, ZHANG W, et al. Discrete element modeling of rock cutting using crushable particles; Proceedings of the 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium, F, 2010[C]. ARMA-10-232.
|
| [44] |
LIU W, ZHU X. Experimental study of the force response and chip formation in rock cutting[J]. Arabian Journal of Geosciences, 2019, 12(15): 1-12.
doi: 10.1007/s12517-018-4128-8
|
| [45] |
CHE D, SMITH J, EHMANN K F.Finite element study of the cutting mechanics of the three dimensional rock turning process; Proceedings of the ASME2015 International Manufacturing Science and Engineering Conference, F, 2015[C]. V001T02A021.
|
| [46] |
JAIME M C, ZHOU Y, LIN J-S, et al. Finite element modeling of rock cutting and its fragmentation process[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 137-46.
doi: 10.1016/j.ijrmms.2015.09.004
URL
|
| [47] |
刘修刚. 页岩力学参数测试及脆性评价[D]. 中国石油大学(北京), 2017.
|
|
[LIU X G. Shale mechanics parameterstest and brittleness evaluation[D]. China University of Petroleum, Beijing, 2017.]
|
| [48] |
王奇生, 王天宇, 钟朋峻, 等. 龙马溪组页岩表面孔隙结构与细观力学特性研究[J]. 石油科学通报, 2023, 8(05): 626-36.
|
|
[WANG Q S, WANG T Y, ZHONG P J, et al. Study of the surface pore structure and micromechanical properties of the Longmaxi shale[J]. Petroleum Science Bulletin, 2023, 8(05): 626-36.]
|
| [49] |
曹继飞, 邹德永, 李成, 等. 基于仿真的复合冲击破岩流固热耦合场分析[J]. 石油机械, 2024, 52(08): 61-9.
|
|
[CAO J F, ZOU D Y, LI C, et al. Analysis on fluid-solid-thermal coupling field in rock breaking under composite impact loads based on simulation model[J]. China Petroleum Machinery, 2024, 52(08): 61-9.]
|
| [50] |
郭家, 刘烨, 韩雪银, 等. 机器学习预测机械钻速及在工程上的应用[J]. 海洋石油, 2024, 44(01): 92-5.
|
|
[GUO J, LIU Y, HAN X Y, et al. Prediction of ROP by machine learning and its application in engineering[J]. Offshore Oil, 2024, 44(01): 92-5.]
|
| [51] |
DIAZ M B, KIM K Y, SHIN H-S, et al. Predicting rate of penetration during drilling of deep geothermal well in Korea using artificial neural networks and real-time data collection[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 225-32.
doi: 10.1016/j.jngse.2019.05.004
URL
|
| [52] |
ALIYEV R, PAUL D. A novel application of artificial neural networks to predict rate of penetration; Proceedings of the SPE Western Regional Meeting, F, 2019[C]. D031S010R005.
|
| [53] |
刘胜娃, 孙俊明, 高翔, 等. 基于人工神经网络的钻井机械钻速预测模型的分析与建立[J]. 计算机科学, 2019, 46(S1): 605-8.
|
|
[LIU S W, SUN J P, GAO X, et al. Analysis and establishment of drilling speed prediction model for drilling machinery based on artificial neural networks[J]. Computer Science, 2019, 46(S1): 605-8.]
|
| [54] |
ALKINANI H H, AL-HAMEEDI A T, DUNN-NORMAN S, et al. Dynamic neural network model to predict the rate of penetration prior to drilling; Proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium, F, 2019[C]. ARMA-2019-0509.
|
| [55] |
ALKINANI H H, AL-HAMEEDI A T T, DUNN-NORMAN S. Data-driven recurrent neural network model to predict the rate of penetration[J]. Upstream Oil and Gas Technology, 2021, 7.
|
| [56] |
ENCINAS M A, TUNKIEL A T, SUI D. Downhole data correction for data-driven rate of penetration prediction modeling[J]. Journal of Petroleum Science and Engineering, 2022, 210.
|
| [57] |
ALSAIHATI A, ELKATATNY S, GAMAL H. Rate of penetration prediction while drilling vertical complex lithology using an ensemble learning model[J]. Journal of Petroleum Science and Engineering, 2022, 208.
|
| [58] |
许明泽, 韦明辉, 邓霜, 等. 多模型集成学习在机械钻速预测中的新应用[J]. 计算机科学, 2021, 48(S1): 619-22+57.
|
|
[XV M Z, WEI M H, DENG S, et al. Application of multi-model ensemble learning in prediction of mechanical drilling rate[J]. Computer Science, 2021, 48(S1): 619-22+57.]
|
| [59] |
DIAZ M B, KIM K Y, SHIN H S. On-Line prediction model for rate of penetration (ROP) with cumulating field data in real time; Proceedings of the 4th ISRM Young Scholars Symposium on Rock Mechanics, F, 2017[C]. ISRM-YSS-2017-071.
|
| [60] |
GAN C, CAO W-H, LIU K-Z, et al. A novel dynamic model for the online prediction of rate of penetration and its industrial application to a drilling process[J]. Journal of Process Control, 2022, 109: 83-92.
doi: 10.1016/j.jprocont.2021.12.002
URL
|
| [61] |
周长春, 姜杰, 李谦, 等. 基于融合特征选择算法的钻速预测模型研究[J]. 钻探工程, 2022, 49(04): 31-40.
|
|
[ZHOU C C, JIANG J, LI Q, et al. Research on drilling rate prediction model based on fusion feature selection algorithm[J]. Drilling Engineering, 2022, 49(04): 31-40.]
|
| [62] |
宋宇, 彭福康, 孟卓然, 等. 基于BO-LSTM的海洋浅层钻井机械钻速预测方法[J]. 自动化与仪表, 2024, 39(10): 14-7+123.
|
|
[SONG Y, PENG F K, MENG Z R, et al. Prediction method for the drilling speed of marine shallow seismic drill rig based on BO-LSTM[J]. Automation & Instrumentation, 2024, 39(10): 14-7+123.]
|
| [63] |
LIU H, JIN Y, SONG X, et al. Rate of penetration prediction method for ultra-deep wells based on LSTM-FNN[J]. Applied Sciences, 2022, 12(15).
|
| [64] |
ZHOU F, FAN H, LIU Y, et al. Application of Xgboost algorithm in rate of penetration prediction with accuracy; Proceedings of the International Petroleum Technology Conference, F, 2022[C]. D012S111R002.
|
| [65] |
PEI Z, SONG X, JI Y, et al. Wide and deep cross network for the rate of penetration prediction[J]. Geoenergy Science and Engineering, 2023: 212066.
|
| [66] |
彭炽, 任书江, 杨赟. 基于子网络架构的页岩气水平井机械钻速预测[J]. 钻采工艺, 2025, 48(01): 113-20.
|
|
[PENG C, REN S J, YANG Y. The prediction of rate of penetration in shale gas horizontal wells based on subnetwork architecture[J]. Drilling Production Technology, 2025, 48(01): 113-20.]
|
| [67] |
王果, 许博越. 理论模型与机器学习融合的PDC钻头钻速预测方法[J]. 石油钻探技术, 2024, 52(05): 117-23.
|
|
[WANG G, XV P Y. The method to predict rop of pdc bits based on fusion of theoretical model and machine learning[J]. Petroleum Drilling Techniques, 2024, 52(05): 117-23.]
|
| [68] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational physics, 2019, 378: 686-707.
doi: 10.1016/j.jcp.2018.10.045
URL
|
| [69] |
SHENG H, YANG C. PFNN: A penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries[J]. Journal of Computational Physics, 2021, 428: 110085.
doi: 10.1016/j.jcp.2020.110085
URL
|
| [70] |
祝兆鹏, 朱林, 宋先知, 等. 机理约束下钻井机械钻速智能预测泛化方法[J]. 天然气工业, 2024, 44(09): 179-89.
|
|
[ZHU Z P, ZHU L, SONG X Z, et al. A generalization method of intelligent ROP prediction under mechanism constraints[J]. Natural Gas Industry, 2024, 44(09): 179-89.]
|
| [71] |
克里斯托夫·莫尔纳. 可解释机器学习[M]. 电子工业出版社: 202410: 274.
|
|
[CHRISTOPH M. Explainable machine learning[M]. Publishing House of Electronics Industry: 202410: 274 ]
|
| [72] |
PEI Z-J, SONG X Z, WANG H T, et al. Interpretation and characterization of rate of penetration intelligent prediction model[J]. Petroleum Science, 2024, 21(1): 582-96.
doi: 10.1016/j.petsci.2023.10.011
URL
|