[1] |
赵金洲, 雍锐, 胡东风, 等. 中国深层—超深层页岩气压裂: 问题、挑战与发展方向[J]. 石油学报, 2024, 45(01): 295-311.
|
|
[ZHAO J Z, YONG R, HU D F, et al. Deep and ultra-deep shale gas fracturing in China: Problems, challenges and directions[J]. Acta Petrolei Sinica, 2024, 45(01): 295-311.]
|
[2] |
赵金洲, 任岚, 蒋廷学, 等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业, 2021, 41(08): 121-142.
|
|
[ZHAO J Z, REN L, JIANG T X, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(08): 121-142.]
|
[3] |
WANG X, ZHANG F, TANG M, et al. Effect of stress shadow caused by multistage fracturing from multiple well pads on fracture initiation and near-wellbore propagation from infill wells[J]. SPE Journal, 2022, 27(01): 204-225.
|
[4] |
WU K, OLSON J. Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells[J]. SPE Journal, 2016, 21(03): 1000-1008.
|
[5] |
刘星, 金衍, 林伯韬, 等. 利用微地震事件重构三维缝网[J]. 石油地球物理勘探, 2019, 54(01): 102-111+8-9.
|
|
[LIU X, JIN Y, LIN B T, et al. A 3D fracture network reconstruction method based on microseismic events[J]. Oil Geophysical Prospecting, 2019, 54(01): 102111+8-9.]
|
[6] |
胡俊杰, 宋毅, 朱炬辉, 等. 基于微地震监测的长宁区块页岩气水平井压裂效果评估[J]. 油气井测试, 2025, 34(01): 35-42.
|
|
[HU J J, SONG Y, ZHU J H, et al. Evaluating hydraulic-fracture effectiveness in Changning shale gas block from microseismic monitoring[J]. Well Testing, 2025, 34(01): 35-42.]
|
[7] |
方正, 陈勉, 王溯, 等. 准噶尔盆地吉木萨尔凹陷页岩水平井水力压裂裂缝形态[J]. 新疆石油地质, 2024, 45(01): 72-80.
|
|
[FANG Z, CHEN M, WANG S, et al. Geometry of hydraulic fractures in fractured horizontal wells in shale reservoirs of Jimsar Sag, Junggar basin[J]. Xinjiang Petroleum Geology, 2024, 45(01): 72-80.]
|
[8] |
HU X, TU Z, MA S, et al. A new fracture parameters inversion model based on the pressure of shut-in under pressure-dependent leak-off conditions[C]. Unconventional Resources Technology Conference, 2022.
|
[9] |
LASCELLES P, WAN J, ROBINSON L, et al. Applying subsurface DNA sequencing in Wolfcamp Shales, Midland Basin[C], SPE Hydraulic Fracturing Technology Conference and Exhibition, 2017.
|
[10] |
KARMAKAR S, GHERGUT J, SAUTER M. Early-flowback tracer signals for fracture characterization in an EGS developed in deep crystalline and sedimentary formations: A parametric study[J]. Geothermics, 2016, 63: 242-252.
|
[11] |
刘曰武, 高大鹏, 李奇, 等. 页岩气开采中的若干力学前沿问题[J]. 力学进展, 2019, 49(00): 1-236.
|
|
[LIU Y W, GAO D P, LI Q, et al. Mechanical frontiers in shale-gas development[J]. Advances in Mechanics, 2019, 49(00): 1-236.]
|
[12] |
江雨溪, 薛亚斐, 熊波, 等. 多段压裂水平井的集成温度—压力瞬态分析方法[J]. 水动力学研究与进展A辑, 2024, 39(05): 715-723.
|
|
[JIANG Y X, XUE Y F, XIONG B, et al. Integrated temperature-pressure transient analysis method for multistage hydraulic fracturing horizontal wells[J]. Chinese Journal of Hydrodynamics, 2024, 39(05): 715-723.]
|
[13] |
邹剑, 兰夕堂, 高尚, 等. 示踪剂裂缝监测技术在气藏水平井压裂中的应用[J]. 精细与专用化学品, 2024, 32(02): 20-23.
|
|
[ZOU J, LAN X T, GAO S, et al. Application of tracer fraction monitoring technology on horizontal well fracturing in gas reservoirs[J]. Fine and Specialty Chemicals, 2024, 32(02): 20-23.]
|
[14] |
隋微波, 刘荣全, 崔凯. 水力压裂分布式光纤声波传感监测的应用与研究进展[J]. 中国科学: 技术科学, 2021, 51(04): 371-387.
|
|
[SUI W B, LIU R Q, CUl K. Application and research progress of distributed optical fiber acoustic sensing monitoring for hydraulic fracturing[J]. Scientia Sinica (Technologica), 2021, 51(04): 371-387.]
|
[15] |
JIN G, ROY B. Hydraulic-fracture geometry characterization using low-frequency DAS signal[J]. The Leading Edge, 2017, 36(12): 975-980.
|
[16] |
隋微波, 温长云, 孙文常, 等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业, 2023, 43(02): 87-103.
|
|
[SUI W B, WEN C Y, SUN W C, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(02): 87-103.]
|
[17] |
THÉVENAZ L. Advanced fiber optics: Concepts and technology[M]. Lausanne (Suisse) Boca Raton (États-Unis): EPFL press CRC press, 2011.
|
[18] |
李晓蓉, 刘旭丰, 张毅, 等. 基于分布式光纤声传感的油气井工程监测技术应用与进展[J]. 石油钻采工艺, 2022, 44(03): 309-320.
|
|
[LI X R, LIU X F, ZHANG Y, et al. Application and progress of oil and gas well monitoring techniques based on distributed optical fiber sensing[J]. Oil Drilling & Production Technology, 2022, 44(03): 309-320.]
|
[19] |
HARTOG A. An introduction to distributed optical fibre sensors[M]. 1 edition. CRC Press, 2017.
|
[20] |
CYR N, CHEN H, SCHINN G. Random-scrambling tunable POTDR for distributed measurement of cumulative PMD[J]. Journal of Lightwave Technology, 2009, 27(18): 4164-4174.
|
[21] |
KAPRON F, MAURER R, TETER M. Theory of backscattering effects in waveguides[J]. Applied Optics, 1972, 11(6): 1352.
doi: 10.1364/AO.11.001352
pmid: 20119145
|
[22] |
黄健. 基于拉曼散射的分布式光纤测温系统的优化研究[D]. 桂林: 广西师范大学, 2022.
|
|
[HUANG J. Optimization of distributed optical fiber temperature measurement system based on Raman scattering[D]. Gulin: Guangxi Normal University, 2022.]
|
[23] |
JUSKAITIS R, MAMEDOV A, POTAPOV V, et al. Distributed interferometric fiber sensor system[J]. Optics Letters, 1992, 17(22): 1623-1625.
pmid: 19798266
|
[24] |
JUSKAITIS R, MAMEDOV A, POTAPOV V, et al. Interferometry with Rayleigh back scattering in a single-mode optical fiber[J]. Optics Letters, 1994, 19(3): 225-227.
|
[25] |
SHATALIN S, TRESCHIKOV V, ROGERS A. Interferometric optical time domain reflectometry for distributed optical fiber sensing[J]. Applied Optics, 1998, 37(24): 5600-5604.
|
[26] |
李康. 光纤分布式声波传感系统的信号增强及其处理的研究[D]. 成都: 电子科技大学, 2019.
|
|
[LI K. Research on signal enhancement and processing of fiber distributed acoustic sensor system[D]. Chengdu: University of Electronic Science and Technology of China, 2019.]
|
[27] |
BARNOSKI M, JENSEN S. Fiber waveguides: A novel technique for investigating attenuation characteristics[J]. Applied Optics, 1976, 15(9): 2112.
doi: 10.1364/AO.15.002112
pmid: 20165347
|
[28] |
BARNOSKI M, ROURKE M, JENSEN S, et al. Optical time domain reflectometer[J]. Applied Optics, 1977, 16(9): 2375.
doi: 10.1364/AO.16.002375
pmid: 20168934
|
[29] |
PERSONICK S. Photon probe-an optical-fiber time-domain reflectometer[J]. Bell System Technical Journal, 1977, 56(3): 355-366.
|
[30] |
TAYLOR H, LEE C. Apparatus and method for fiber optic intrusion sensing[P]. 1993.
|
[31] |
POSEY R, JOHNSON G, VOHRA S. Strain sensing based on coherent Rayleigh scattering in an optical fibre[J]. Electronics Letters, 2000, 36(20): 1688-1689.
|
[32] |
KARRENBACH M, RIDGE A, COLE S, et al. DAS microseismic monitoring and integration with strain measurements in hydraulic fracture profiling[C]. Unconventional Resources Technology Conference, 2017.
|
[33] |
RICHARDS J, BARTLETT R, ONEN D, et al. Cloud-based solution for permanent fiber-optic DAS flow monitoring[C]. SPE Digital Energy Conference and Exhibition, 2015.
|
[34] |
SEGURA J, TRUMMER S, GRISANTI M, et al. Hybrid electro-optical cable for coiled tubing logging and interventions[C]. SPE/ICoTA Well Intervention Conference and Exhibition, 2020
|
[35] |
MOLENAAR M, COX B. Field cases of hydraulic fracture stimulation diagnostics using fiber optic distributed acoustic sensing (DAS) measurements and analyses[C]. SPE Unconventional Gas Conference and Exhibition, 2013.
|
[36] |
SONG X, JIN G, WU K, et al. A numerical model for analyzing mechanical slippage effect on crosswell distributed fiber-optic strain measurements during fracturing[J]. SPE Journal, 2024, 29(09): 4724-4736.
|
[37] |
SONG X, JIN G, WU K. Deciphering cross-well strain data from single-use fiber with slippage effects during fracturing[C]. Unconventional Resources Technology Conference, 2024.
|
[38] |
李亭, 张金发, 管英柱, 等. 水平井分段压裂各段产能评价技术研究进展[J]. 科学技术与工程, 2023, 23(21): 8916-8927.
|
|
[LI T, ZHANG J F, GUAN Y Z, et al. Progress on each section productivity evaluation technology of horizontal well staged fracturing[J]. Science Technology and Engineering, 2023, 23(21): 8916-8927.]
|
[39] |
刘合, 王松, 叶泽禹, 等. 光纤传感技术在油气田开发中的应用[J]. 石油物探, 2024, 63(04): 707-717.
|
|
[LIU H, WANG S, YE Z Y, et al. Application of fiber optic sensing technology in oil and gas field development[J]. Geophysical Prospecting for Petroleum, 2024, 63(04): 707-717.]
|
[40] |
卢聪, 李秋月, 郭建春. 分布式光纤传感技术在水力压裂中的研究进展[J]. 油气藏评价与开发, 2024, 14(04): 618-628.
|
|
[LU C, LI Q Y, GUO J C. Research progress of distributed optical fiber sensing technology in hydraulic fracturing[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(04): 618-628.]
|
[41] |
ADACHI J, SIEBRITS E, PEIRCE A, et al. Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 739-757.
|
[42] |
LECAMPION B, BUNGER A, ZHANG X. Numerical methods for hydraulic fracture propagation: A review of recent trends[J]. Journal of Natural Gas Science and Engineering, 2017, 49: 66-83.
|
[43] |
CHEN B, BARBOZA B, SUN Y, et al. A review of hydraulic fracturing simulation[J]. Archives of Computational Methods in Engineering, 2022, 29: 1-58.
|
[44] |
LIU Y, WU K, JIN G, et al. Rock deformation and strain-rate characterization during hydraulic fracturing treatments: Insights for interpretation of low-frequency distributed acoustic-sensing signals[J]. SPE Journal, 2020, 25(05): 2251-2264.
|
[45] |
WU K. Numerical modeling of complex hydraulic fracture development in unconventional reservoirs[D]. University of Texas-Austin, 2014.
|
[46] |
TAN Y, WANG S, RIJKEN M, et al. Geomechanical template for distributed acoustic sensing strain patterns during hydraulic fracturing[J]. SPE Journal, 2021, 26(2): 627-638.
|
[47] |
陈铭, 郭天魁, 胥云, 等. 水平井压裂多裂缝扩展诱发光纤应变演化机理[J]. 石油勘探与开发, 2022, 49(1): 183-193.
doi: 10.11698/PED.2022.01.17
|
|
[CHEN M, GUO T K, XU Y, et al. Evolution mechanism of optical fiber strain induced by multi-fracture growth during fracturing in horizontal wells[J]. Petroleum Exploration and Development, 2022, 49(1): 183-193.]
|
[48] |
WANG C, EATON D, MA Y. Numerical modeling of low-frequency distributed acoustic sensing signals for mixed-mode fracture activation[J]. Geophysics, 2023, 88(6): 25-36.
|
[49] |
UGUETO G, WU K, JIN G, et al. A catalogue of fiber optics strain-rate fracture driven interactions[C]. SPE Hydraulic Fracturing Technology Conference and Exhibition, 2023.
|
[50] |
WANG J, TAN Y, RIJKEN M, et al. Observations and modeling of fiber optic strain on hydraulic fracture height growth in Hydraulic Fracturing Test Site 2 (HFTS-2)[J]. SPE Journal, 2022, 27(02), 1109-1122.
|
[51] |
SRINIVASAN A, LIU Y, WU K, et al. Geomechanical modeling of fracture-induced vertical strain measured by distributed fiber-optic strain sensing[J]. SPE Production & Operations, 2023, 38(03): 537-551.
|
[52] |
LIU Y, JIN G, WU K, et al. Hydraulic-fracture-width inversion using low-frequency distributed-acoustic-sensing strain data—part Ⅰ: algorithm and sensitivity analysis[J]. SPE Journal, 2021, 26(01): 359-371.
|
[53] |
LIU Y, JIN G, WU K, et al. Hydraulic-fracture-width inversion using low-frequency distributed-acoustic-sensing strain data part Ⅱ: extension for multifracture and field application[J]. SPE Journal, 2021, 26(05): 2703-2715.
|
[54] |
LIU Y, JIN G, WU K, et al. Quantitative hydraulic-fracture-geometry characterization with low-frequency distributed-acoustic-sensing strain data: Fracture-height sensitivity and field applications[J]. SPE Production & Operations, 2022, 37(02): 159-168.
|
[55] |
HU X, TU Z, ZHOU F, et al. A hydraulic fracture geometry inversion model based on distributed-acoustic-sensing data[J]. SPE Journal, 2023, 28(03), 1560-1576.
|
[56] |
TU Z, HU X, BAI J, et al. Characterize fracture geometry and propagation with low frequency distributed acoustic sensing strain data[J]. Engineering Fracture Mechanics, 2024, 298: 109947.
|
[57] |
LIU Y, LIANG L, ZEROUG S. Stochastic inversion for equivalent hydraulic fracture characterization using low-frequency distributed acoustic sensing data[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 173: 105610.
|
[58] |
陈铭, 郭天魁, 翁定为, 等. 基于裂缝前缘邻井光纤应变的压裂裂缝参数解释方法[J]. 石油学报, 2024, 45(08): 1282-1295+1308.
|
|
[CHEN M, GUO T K, WENG D W, et al. Interpretation method of fracturing fracture parameters based on optical fiber strain at the front margin of fracture in adjacent wells[J]. Acta Petrolei Sinica, 2024, 45(08): 1282-1295+1308.]
|
[59] |
CHEN R, ZAGHLOUL M, YAN A, et al. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes[J]. Opt Express, 2016, 24(4): 3894-3902.
doi: 10.1364/OE.24.003894
pmid: 26907042
|
[60] |
LEGGETT S, REID T, ZHU D, et al. Experimental investigation of low-frequency distributed acoustic strain-rate responses to propagating fractures[J]. SPE Journal, 2022, 27(06): 3814-3828.
|
[61] |
赵丽芝, 唐福建, 周智. 分布式光纤裂缝监测实验与数值分析[J]. 中国测试, 2022, 48(12): 7-14.
|
|
[ZHAO L Z, TANG F J, ZHOU Z. Experimental and numerical analysis of cracking monitoring based on distributed optical fiber[J]. China Measurement & Test, 2022, 48(12): 7-14.]
|
[62] |
WANG S, CHEN M, CHANG Z, et al. Experimental study on indoor multi-cluster fracturing based on distributed fibre-optical monitoring[C]. International Geomechanics Symposium, 2023.
|
[63] |
王溯, 陈勉, 吕嘉昕. 水力压裂多裂缝扩展诱发光纤应变演化试验研究[J]. 石油机械, 2024, 52(08): 101-107.
|
|
[WANG S, CHEN M, LV J X. Experimental study on fiber strain evolution induced by multi-fracture propagation in hydraulic fracturing[J]. China Petroleum Machinery, 2024, 52(08): 101-107.]
|
[64] |
ZHANG Y, GUO T, CHEN M, et al. Real-time monitoring of rock fracture by true triaxial test using fiber-optic strain monitoring in adjacent wells[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2025, 17(6): 3762-3772.
|
[65] |
MOLENAAR M, HILL D, WEBSTER P, et al. First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics[J]. SPE Drilling & Completion, 2012, 27(01): 32-38.
|
[66] |
LUO B, JIN G, LELLOUCH A. Estimation of seismic velocity and layer thickness of Eagle Ford Formation using microseismic guided waves in downhole distributed acoustic sensing records[C]. SEG Technical Program Expanded Abstracts, 2020.
|
[67] |
CIEZOBKA J. Overview of Hydraulic Fracturing Test Site 2 in the Permian Delaware Basin (HFTS-2)[C]. Unconventional Resources Technology Conference, 2021.
|
[68] |
UGUETO G, WOJTASZEK M, HUCKABEE P, et al. An integrated view of hydraulic induced fracture geometry in Hydraulic Fracture Test Site 2[C]. Unconventional Resources Technology Conference, 2021.
|
[69] |
ZHANG Z, DISIENA J, BEVC D, et al. Hydraulic fracture characterization by integrating multidisciplinary data from the Hydraulic Fracture Test Site 2 (HFTS-2)[C]. Unconventional Resources Technology Conference, 2021.
|
[70] |
张矿生, 慕立俊, 陆红军, 等. 鄂尔多斯盆地页岩油水力压裂试验场建设概述及实践认识[J]. 钻采工艺, 2024, 47(06): 16-27.
|
|
[ZHANG K S, MU L J, LU H J, et al. Overview and practical understanding of the construction of shale oil hydraulic fracture field labs in the Ordos Basin[J]. Drilling & Production Technology, 2024, 47(06): 16-27.]
|
[71] |
刘合, 慕立俊, 齐银, 等. 基于光纤监测的分段压裂多簇均衡性评价与优化建议[J]. 钻采工艺, 2024, 47(06): 1-7.
|
|
[LIU H, MU L J, QI Y, Evaluation and optimization suggestions of multi-cluster equilibrium of segmented fracturing based on optical fiber monitoring[J]. Drilling & Production Technology, 2024, 47(06): 1-7.]
|
[72] |
罗文军, 储仿东, 衡峰, 等. DAS微地震监测技术在页岩气探区的研究与应用[C]// 中国石油学会石油物探专业委员会, 中国地球物理学会勘探地球物理委员会. 2022年中国石油物探学术年会论文集(下册). 中油奥博(成都)科技有限公司, 2022: 278-281.
|
|
[LUO W J, CHU F D, HENG F, et al. Research and application of DAS microseismic monitoring technology in shale gas exploration area[C]// China Petroleum Institute Petroleum Geophysical Professional Committee, China Geophysical Society Exploration Geophysics Committee. 2022 Annual Symposium of China Petroleum Geophysical Exploration (Volume II). Optical Science and Technology (Chengdu) Ltd, 2022: 278-281.]
|
[73] |
桑宇, 隋微波, 曾波, 等. 深层天然裂缝性页岩储层水力压裂光纤监测远场应变分析[J]. 天然气工业, 2024, 44(05): 56-67.
|
|
[SANG Y, SUI W B, ZENG B, et al. Far-field strain analysis for fiber optic monitoring of hydraulic fracturing in a deep naturally fractured shale reservoir[J]. Natural Gas Industry, 2024, 44(05): 56-67.]
|
[74] |
石钻. 新疆油田井下光纤压裂裂缝监测技术试验成功[J]. 石油钻探技术, 2016, 44(05): 21.
|
|
[SHI Z. The test of downhole optical fiber fracturing fracture monitoring technology in Xinjiang Oilfield is successful[J]. Petroleum Drilling Techniques, 2016, 44(05): 21.]
|
[75] |
吴宝成, 王佳, 张景臣, 等. 管外光纤监测压裂单簇裂缝延伸强度现场试验[J]. 钻采工艺, 2022, 45(02): 84-88.
|
|
[WU B C, WANG J, ZHANG J C, et al. Field test of single cluster fracture extension strength monitoring by optical fiber outside casing[J]. Drilling & Production Technology, 2022, 45(02): 84-88.]
|
[76] |
王博, 李丽哲, 董小卫, 等. 基于光纤监测的段内多簇压裂效果主控因素研究[J]. 石油科学通报, 2023, 8(06): 775-786.
|
|
[WANG B, LI L Z, DONG X W, et al. Investigation into the controlling factors of the in-stage multi-cluster fracturing effects based on optical fiber monitoring[J]. Petroleum Science Bulletin, 2023, 8(06): 775-786.]
|
[77] |
吕振虎, 吕蓓, 罗垚, 等. 基于光纤监测的段内多簇暂堵方案优化[J]. 石油钻探技术, 2024, 52(01): 114-121.
|
|
[LV Z H, LV B, LUO Y, et al. Optimization of in-stage multi-cluster temporary plugging scheme based on optical fiber monitoring[J]. Petroleum Drilling Techniques, 2024, 52(01): 114-121.]
|
[78] |
武绍江, 王一博, 梁兴, 等. 页岩气储层水平井压裂分布式光纤邻井微振动监测及震源位置成像[J]. 地球物理学报, 2022, 65(07): 2756-2765.
|
|
[WU S J, WANG Y B, LIANG X, et al. Distributed fiber optic micro-vibration monitoring in offset-well and microseismic source location imaging during horizontal well fracturing in shale gas reservoir[J]. Chinese Journal of Geophysics, 2022, 65(07): 2756-2765.]
|