中国科技核心期刊
(中国科技论文统计源期刊)
  Scopus收录期刊

石油科学通报 ›› 2025, Vol. 10 ›› Issue (4): 778-790. doi: 10.3969/j.issn.2096-1693.2025.02.018

• • 上一篇    下一篇

邻井分布式光纤监测水力裂缝扩展半解析正演模型

毛渝1,2(), 陈勉1,2,*(), 隋微波1,2, 何乐3, 朱炬辉3   

  1. 1 中国石油大学(北京)石油工程学院,北京 102249
    2 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
    3 中国石油集团川庆钻探工程有限公司井下作业公司,成都 610051
  • 收稿日期:2024-10-27 修回日期:2025-03-07 出版日期:2025-08-15 发布日期:2025-08-05
  • 通讯作者: *陈勉(1962年—),博士、教授、博士生导师,主要从事石油工程岩石力学研究,chenm@cup.edu.cn
  • 作者简介:毛渝(1999年—),在读博士研究生,主要从事石油工程水力压裂光纤监测研究,myleyu@126.com
  • 基金资助:
    国家自然科学基金重点项目“提高超深大斜度井压裂效率的关键力学问题研究”(52334001);中国石油集团油田技术服务有限公司科学研究与技术开发项目“页岩油气勘探开发关键技术研究与应用”课题4“页岩储层光纤智能监测与裂缝评价技术研究与应用”(2023T-002-001)

Semi-analytical forward model for hydraulic fracture propagation monitoring using distributed fiber optics in adjacent wells

MAO Yu1,2(), CHEN Mian1,2,*(), SUI Weibo1,2, HE Le3, ZHU Juhui3   

  1. 1 College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    2 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
    3 CNPC Chuanqing Drilling Engineering Company Limited Downhole Operation Company, Chengdu 610051, China
  • Received:2024-10-27 Revised:2025-03-07 Online:2025-08-15 Published:2025-08-05

摘要:

邻井分布式光纤监测技术逐渐成为非常规油气藏压裂过程中裂缝监测的重要手段之一,建立邻井分布式光纤应变正演模型对于探究邻井光纤应变响应机理和裂缝几何特征反演等具有重要意义,但现有的光纤应变响应正演解释模型存在裂缝扩展模型选择灵活性不足和网格精度导致的计算效率降低等问题。本文建立了任意开度与几何形态裂缝扩展过程中应力—位移场的半解析计算模型,构建了邻井光纤应变正演模型。通过硬币型裂缝计算案例对裂缝周围应力场进行求解并与Sneddon解析解进行了对比分析,采用水平邻井光纤监测垂直椭圆裂缝计算案例正演了邻井光纤应变响应,并与位移不连续法邻井光纤应变正演结果进行对比分析,分析表明本文模型在经典常规算例下的计算结果与解析方法和位移不连续方法具有一致性。本文进一步将不同裂缝扩展模型与半解析应变计算模型耦合应用于现场光纤数据解释,针对美国HFTS-2矿场实验中B1H井19段和B2H井20段邻井光纤监测结果,本模型模拟结果契合了现场光纤数据响应特征模式,对于呈现复杂特征的B2H井20段,本文模型模拟结果在细节特征和时间尺度上相较于位移不连续法计算模型有更好的对应效果。本模型建立了任意开度与几何形态裂缝扩展邻井光纤应变正演模型,减少了邻井光纤正演计算量,同时可以耦合多种裂缝扩展模型,在现场数据正演解释中可以实现细节特征和时间尺度的更优匹配。

关键词: 水力压裂, 光纤监测, 半解析, 裂缝监测, 正演模型

Abstract:

Distributed fiber optic monitoring in adjacent wells has increasingly become an essential technique for fracture surveillance during hydraulic fracturing of unconventional oil and gas reservoirs. Developing forward models for distributed fiber optic strain response in adjacent wells is of significant importance for understanding the mechanism of fiber response and for the inversion of fracture geometries. However, existing forward interpretation models face limitations from insufficient flexibility in the selection of fracture propagation models, and by computational inefficiency caused by grid-based discretization, especially when high precision is required. To address these limitations, this study presents a semi-analytical stress-displacement field model for simulating fracture propagation with arbitrary aperture and geometric shape. Based on this, a forward modeling framework for adjacent well distributed fiber optic strain response is established. Using a penny-shaped fracture as a representative example, the stress field around the fracture is calculated and benchmarked against the classical Sneddon analytical solution. A forward simulation of fiber optic strain response for a scenario where a horizontal adjacent well monitors a vertically oriented elliptical fracture is conducted. The results are compared with the forward-modeled strain response from the Displacement Discontinuity Method(DDM). The results reveal strong consistency between the semi-analytical model and both the analytical and DDM solutions in classical benchmark cases, confirming the model’s validity and applicability. The model is further coupled with various fracture propagation models and applied to the interpretation of real field data. In particular, distributed fiber optic monitoring results from Stage 19 of Well B1H and Stage 20 of Well B2H in the Hydraulic Fracturing Test Site 2 (HFTS-2) project in the United States are analyzed. The modeling results show that the proposed approach accurately reproduces the characteristic patterns observed in field fiber data. For Stage 20 of Well B2H, which exhibits higher-complexity response characteristics, the model provides a closer match to observed details and temporal evolution compared with the DDM-based approach. In conclusion, this study establishes a semi-analytical forward modeling approach for fiber optic strain in adjacent wells under arbitrary fracture aperture and geometry, significantly reducing computational cost and improving efficiency. The model’s flexibility enables seamless integration with a variety of fracture propagation models, enhancing its capacity to accurately capture complex fracture behaviors observed in field monitoring. This provides a powerful tool for detailed interpretation and analysis of distributed fiber optic data in adjacent well applications.

Key words: hydraulic fracturing, fiber optic monitoring, semi-analytical, fracture monitoring, forward model

中图分类号: