[1] |
石林, 张鲲鹏, 慕立俊. 页岩油储层压裂改造技术问题的讨论[J]. 石油科学通报, 2020, 5(4): 496-511.
|
|
[SHI L, ZHANG K P, MU L J. Discussion of hydraulic fracturing technical issues in shale oil reservoirs[J]. Petroleum Science Bulletin, 2020, 04: 496-511.]
|
[2] |
金衍, 程万, 陈勉. 页岩气储层压裂数值模拟技术研究进展[J]. 力学与实践, 2016, 38(1): 1-9.
|
|
[JIN Y, CHENG W, CHEN M. A review of numerical simulations of hyro-fracking in shale gas reservoir[J]. Mechanics in Engineering, 2016, 38(1): 1-9.]
|
[3] |
董京楠. 水力压裂裂缝多尺度扩展机理与表征研究[D]. 中国石油大学(北京), 2019.
|
|
[DONG J. Study on mechanism and characterization of multi-scale hydraulic fracturing[D]. China University of Petroleum, Beijing.]
|
[4] |
谭鹏, 金衍, 陈刚. 四川盆地不同埋深龙马溪页岩水力裂缝缝高延伸形态及差异分析[J]. 石油科学通报, 2022, 7(1): 61-70.
|
|
[TAN P, JIN Y, CHEN G. Differences and causes of fracture height geometry for Longmaxi shale with different burial depths in the Sichuan basin[J]. Petroleum Science Bulletin, 2022, 01: 61-70.]
|
[5] |
朱海燕, 宋宇家, 唐煊赫. 页岩气储层四维地应力演化及加密井复杂裂缝扩展研究进展[J]. 石油科学通报, 2021, 6(3): 396-416.
|
|
[ZHU H Y, SONG Y J, TANG X H. Research progress on 4-dimensional stress evolution and complex fracture propagation of infill wells in shale gas reservoirs[J]. Petroleum Science Bulletin, 2021, 03: 396-416.]
|
[6] |
王燚钊, 侯冰, 张鲲鹏, 等. 碳酸盐岩储层酸压室内真三轴物理模拟实验[J]. 石油科学通报, 2020, 5(3): 412-419.
|
|
[WANG Y Z, HOU B, ZHANG K P, et al. Laboratory true triaxial acid fracturing experiments for carbonate reservoirs[J]. Petroleum Science Bulletin, 2020, 03: 412-419.]
|
[7] |
考佳玮, 金衍, 韦世明. 缝洞型碳酸盐岩储层人工裂缝扩展数值模拟[J]. 石油科学通报, 2023, 8(3): 303-317.
|
|
[KAO J W, JIN Y, WEI S M. Numerical simulation of hydraulic fracture propagation in fracture-cavity carbonate formation[J]. Petroleum Science Bulletin, 2023, 03: 303-317.]
|
[8] |
王燚钊, 侯冰, 王栋, 等. 页岩油多储集层穿层压裂缝高扩展特征[J]. 石油勘探与开发, 2021, 48(2): 402-410.
doi: 10.11698/PED.2021.02.17
|
|
[WANG Y Z, HOU B, WANG D, et al. Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs[J]. Petroleum Exploration and Development, 2021, 48(2): 402-410.]
|
[9] |
GAO Y, WANG X, JIANG H, et al. Numerically coupled thermo-hydro-mechanical analyses of ultra-heavy oil reservoirs during the micro-fracturing stage[J]. Energies, 2022, 15(10): 3677.
|
[10] |
张矿生, 慕立俊, 陆红军, 等. 鄂尔多斯盆地页岩油水力压裂试验场建设概述及实践认识[J]. 钻采工艺, 2024: 1-12.
|
|
[ZHANG K S, MU L J, LU H J, et al. Overview and practical understanding of the construction of shale oil hydraulic fracture field labs in the Ordos basin[J]. Drilling & Production Technology, 2024: 1-12.]
|
[11] |
RATERMAN K T, FARRELL H E, MORA O S, et al. Sampling a stimulated rock volume: An eagle ford example[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(04): 927-941.
|
[12] |
党玉峰, 黄生松, 李建, 等. 威远页岩气压裂监测技术[J]. 油气井测试, 2023, 32(3): 55-61.
|
|
[DANG Y F, HUANG S S, LI J, et al. Fracturing monitoring technology of Weiyuan shale gas reservoir[J]. Well Testing, 2023, 32(3): 55-61.]
|
[13] |
黄嘉林, 刘德华, 商玉锋. 页岩储层压裂体积规模监测方法研究进展[J]. 辽宁化工, 2022, 51(5): 662-666.
|
|
[HUANG J L, LIU D H, SHANG Y F. Research progress on monitoring methods for fracture volume in shale reservoirs[J]. Liaoning Chemical Industry, 2022, 51(5): 662-666.]
|
[14] |
JIN G, ROY B. Hydraulic-fracture geometry characterization using low-frequency DAS signal[J]. The Leading Edge, 2017, 36(12): 975-980.
|
[15] |
HOU B, ZHANG Q, LV J. Distributed fiber optic monitoring of asymmetric fracture swarm propagation in laminated continental shale oil reservoirs[J]. Rock Mechanics and Rock Engineering, 2024, 57(7): 5067-5087.
|
[16] |
WANG S, CHEN M, CHANG Z, et al. Experimental study on indoor multi-cluster fracturing based on distributed fibre-optical monitoring[C]// International Geomechanics Symposium. OnePetro, 2023.
|
[17] |
WANG S, CHEN M, LV J, et al. Study on the evolution characteristics of fiber-optic strain induced by the propagation of bedding fractures in hydraulic fracturing[J]. Petroleum Science, 2024.
|
[18] |
隋微波, 温长云, 孙文常, 等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业, 2023, 43(2): 87-103.
|
|
[SUI W B, WEN C Y, SUN W C, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87-103.]
|
[19] |
王溯, 陈勉, 吕嘉昕, 等. 水平井水力压裂裂缝扩展诱发垂直邻井光纤应变演化特征[J]. 东北石油大学学报, 2024, 48(4): 100-110, 141.
|
|
[WANG S, CHEN M, LV J X, et al. Characteristics of induced vertical adjacent well fiber-optic strain evolution due to fracture propagation in horizontal well hydraulic fracturing[J]. Journal of Northeast Petroleum University, 2024, 48(4): 100-110, 141.]
|
[20] |
陈铭, 郭天魁, 翁定为, 等. 基于裂缝前缘邻井光纤应变的压裂裂缝参数解释方法[J]. 石油学报, 2024, 45(8): 1282-1295, 1308.
doi: 10.7623/syxb202408010
|
|
[CHEN M, GUO T K, WENG D W, et al. Interpretation method of fracturing fracture parameters based on optical fiber strain at the front margin of fracture in adjacent wells[J]. Acta Petroleum Sinica, 2024, 45(8): 1282-1295, 1308.]
|
[21] |
RICHTER P, PARKER T, WOERPEL C, et al. High-resolution distributed acoustic sensor using engineered fiber for hydraulic fracture monitoring and optimization in unconventional completions[C]// SEG Technical Program Expanded Abstracts 2019. San Antonio, Texas: Society of Exploration Geophysicists, 2019: 4874-4878.
|
[22] |
UGUETO G, WU K, JIN G, et al. A catalogue of fiber optics strain-rate fracture driven interactions[C]// Day 2 Wed, February 01, 2023. The Woodlands, Texas, USA: OnePetro, 2023: D021S003R001.
|
[23] |
LIU Y, WU K, JIN G, et al. Rock deformation and strain-rate characterization during hydraulic fracturing treatments: Insights for interpretation of low-frequency distributed acoustic-sensing signals[J]. SPE Journal, 2020, 25(05): 2251-2264.
|
[24] |
TAN Y, WANG S, RIJKEN M C M, et al. Geomechanical template for distributed acoustic sensing strain patterns during hydraulic fracturing[J]. SPE Journal, 2021, 26(02): 627-638.
|
[25] |
RAMOS GURJAO K G, GILDIN E, GIBSON R, et al. Investigation of strain fields generated by hydraulic fracturing with analytical and numerical modeling of fiber optic response[J]. SPE Reservoir Evaluation & Engineering, 2022, 25(02): 367-379.
|
[26] |
SRINIVASAN A, LIU Y, WU K, et al. Geomechanical modeling of fracture-induced vertical strain measured by distributed fiber-optic strain sensing[J]. SPE Production and Operations, 2023, 38(03): 537-551.
|
[27] |
韦世明, 郝亚龙, 隋微波, 等. 不同倾角水力裂缝扩展的邻井光纤监测信号特征研究[J]. 石油科学通报, 2024, 9(5): 764-776.
|
|
[WEI S M, HAO Y L, SUI W B, et al. Research on the characteristics of fiber optic signals for neighboring wells with hydraulic fracture propagation at different inclination angles[J]. Petroleum Science Bulletin, 2024, 9(5): 764-776.]
|
[28] |
FU W, MORRIS J, FU P, et al. Developing upscaling approach for swarming hydraulic fractures observed at hydraulic fracturing test site through multiscale simulations[C]// SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, February 2020.
|
[29] |
陈铭, 郭天魁, 胥云, 等. 水平井压裂多裂缝扩展诱发光纤应变演化机理[J]. 石油勘探与开发, 2022, 49(1): 183-193.
doi: 10.11698/PED.2022.01.17
|
|
[CHEN M, GUO T K, XU Y, et al. Evolution mechanism of optical fiber strain induced by multi-fracture growth during fracturing in horizontal wells[J]. Petroleum Exploration and Development, 2022, 49(1): 183-193.]
|
[30] |
BOUSSINESQ J. Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: Principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse[M]. Paris: Gauthier-Villars, 1885.
|
[31] |
SNEDDON I N. The distribution of stress in the neighbourhood of a crack in an elastic solid[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1946, 187(1009): 229-260.
|
[32] |
HARTOG A H. An introduction to distributed optical fibre sensors[M]. Boca Raton: CRC Press, 2017.
|
[33] |
YAN X. An efficient and accurate numerical method of stress intensity factors calculation of a branched crack[J]. Journal of Applied Mechanics, 2005, 72(3): 330-340.
|
[34] |
左胜. 大规模并行有限元区域分解方法研究及其应用[D]. 西安: 西安电子科技大学, 2020.
|
|
[ZUO S. Research on large scale parallel finite element domain decomposition methods and their applications[D]. Xi'an: Xidian University, 2020.]
|
[35] |
CIEZOBKA J. Overview of hydraulic fracturing test site 2 in the Permian Delaware basin (HFTS-2)[C]// Proceedings of the 9th Unconventional Resources Technology Conference. Houston, Texas, USA: American Association of Petroleum Geologists, 2021.
|
[36] |
WANG J, TAN Y, RIJKEN M, et al. Observations and modeling of fiber optic strain on hydraulic fracture height growth in hydraulic fracturing test site 2 (HFTS-2)[J]. SPE Journal, 2022, 27(02): 1109-1122.
|