[1] |
翁定为, 雷群, 管保山, 等. 中美页岩油气储层改造技术进展及发展方向[J]. 石油学报, 2023, 44(12): 2297-2307.
doi: 10.7623/syxb202312018
|
|
[WENG D W, LEI Q, GUAN B S, et al. Progress and development directions of reservoir stimulation techniques for shale oil and gas in China and the United States[J]. Acta Petrolei Sinica, 2023, 44(12): 2297-2307.]
doi: 10.7623/syxb202312018
|
[2] |
黄福喜, 汪少勇, 李明鹏, 等. 中国石油深层、超深层油气勘探进展与启示[J]. 天然气工业, 2024, 44(1): 86-96.
|
|
[HUANG F X, WANG S Y, LI M P, et al. Progress and implications of deep and ultra-deep oil and gas exploration in PetroChina[J]. Natural Gas Industry, 2024, 44(1): 86-96.]
|
[3] |
邹才能, 朱如凯, 董大忠, 等. 页岩油气科技进步、发展战略及政策建议[J]. 石油学报, 2022, 43(12): 1-12.
|
|
[ZOU C N, ZHU R K, DONG D Z, et al. Shale oil and gas technology progress, development strategy and policy suggestion[J]. Acta Petrolei Sinica, 2022, 43(12): 1-12 ]
|
[4] |
席胜利, 闫伟, 刘新社, 等. 鄂尔多斯盆地天然气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 33-51, 132.
doi: 10.7623/syxb202401003
|
|
[XI S L, YAN W, LIU X S, et al. New fields, new types and resource potentials of natural gas exploration in Ordos Basin[J]. Acta Petrolei Sinica, 2024, 45(1): 33-51, 132.]
doi: 10.7623/syxb202401003
|
[5] |
董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 29(1): 29-45.
|
|
[DONG D Z, QIU Z, ZHANG L F, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 29(1): 29-45.]
|
[6] |
何宗杭, 陆子杰, 李玉, 等. 鄂尔多斯盆地延长组长72油层组陆相页岩纹层及裂缝分布特征的量化表征[J]. 石油科学通报, 2024, 9(1): 21-34.
|
|
[HE Z H, LU Z J, LI Y, et al. Quantitative characterization of the distribution characteristics of continental shale laminas and cracks in the Chang 72 Oil Group of Yanchang Formation, Ordos Basin[J]. Petroleum Science Bulletin, 2023, 05: 21-34.]
|
[7] |
赵振峰, 王文雄, 徐晓晨, 等. 鄂尔多斯盆地海相深层页岩气压裂技术[J]. 石油钻探技术, 2023, 51(5): 23-32.
|
|
[ZHAO Z F, WANG W X, XU X C, et al. Hydraulic fracturing technology for deep marine shale gas in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 23-32.]
|
[8] |
史璨, 林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报, 2021, 6(1): 92-113.
|
|
[SHI C, LIN B T. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin, 2021, 01: 92-113.]
|
[9] |
李建红, 王延斌. 临兴地区盒八段砂岩裂缝发育特征及其对压裂效果的影响[J]. 矿业科学学报, 2021, 6(4): 379-388.
|
|
[LI J H, WANG Y B. Fracture characteristics of the 8th member of Shihezi formation in Linxing area and its influence on fracturing effect[J]. Journal of Mining Science and Technology, 2021, 6(4): 379-388.]
|
[10] |
高丽军, 吴鹏, 石雪峰, 等. 海陆过渡相不同源储类型页岩储层关键参数测井识别及分类方法[J]. 天然气地球科学, 2022, 33(7): 1132-1143.
doi: 10.11764/j.issn.1672-1926.2022.01.007
|
|
[GAO L J, WU P, SHI X F, et al. Logging interpretation and classification method of reservoir parameters of marine continental transitional shale based on source and reservoir type[J]. Natural Gas Geosceience, 2022, 33(7): 1132-1143.]
|
[11] |
曾联波, 吕文雅, 徐翔, 等. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义[J]. 石油学报, 2022, 43(2): 180-191.
doi: 10.7623/syxb202202002
|
|
[ZENG L B, LÜ W Y, XU X, et al. Development characteristics, formation mechanism and hydrocarbon significance of bedding fractures in typical tight sandstone and shale[J]. Acta Petrolei Sinica, 2022, 43(2): 180-191.]
doi: 10.7623/syxb202202002
|
[12] |
刘曰武, 高大鹏, 李奇, 等. 页岩气开采中的若干力学前沿问题[J]. 力学进展, 2019, 49: 201901.
|
|
[LIU Y W, GAO D P, LI Q, et al. Mechanical frontiers in shale-gas development[J]. Advances in Mechanics, 2019, 49: 201901.]
|
[13] |
DAS I, ZOBACK M D. Long-period, long-duration seismic events during hydraulic fracture stimulation of a shale gas reservoir[J]. The Leading Edge, 2011, 30(7): 778-786.
|
[14] |
石林, 史璨, 田中兰, 等. 中石油页岩气开发中的几个岩石力学问题[J]. 石油科学通报, 2019, 4(3): 223-232.
|
|
[SHI L, SHI C, TIAN Z L, et al. Several rock mechanics problems in the development of shale gas in PetroChina[J]. Petroleum Science Bulletin, 2019, 03: 223-232.]
|
[15] |
BOBROVA M, STANCHITS S, SHEVTSOVA A, et al. Laboratory investigation of hydraulic fracture behavior of unconventional reservoir rocks[J]. Geosciences, 2021, 11(7): 292.
|
[16] |
ABDELAZIZ A, GRASSELLI G. Crack opening and slippage signatures during stimulation of bedded montney rock under laboratory true-triaxial hydraulic fracturing experiments[J]. Rock Mechanics and Rock Engineering, 2024, 57(11): 9827-9845.
|
[17] |
TAN P, JIN Y, XIONG Z Y, et al. Effect of interface property on hydraulic fracture vertical propagation behavior in layered formation based on discrete element modeling[J]. Journal of Geophysics and Engineering, 2018, 15(4): 1542-1550.
|
[18] |
ZHANG R, HOU B, HAN H, et al. Experimental investigation on fracture morphology in laminated shale formation by hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2019, 177: 442-451.
|
[19] |
TAN P, JIN Y, HAN K, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017, 206: 482-493.
|
[20] |
谭鹏, 金衍, 陈刚. 四川盆地不同埋深龙马溪页岩水力裂缝缝高延伸形态及差异分析[J]. 石油科学通报, 2022, 7(1): 61-70.
|
|
[TAN P, JIN Y, CHEN G. Differences and causes of fracture height geometry for Longmaxi shale with different burial depths in the Sichuan basin[J]. Petroleum Science Bulletin, 2022, 01: 61-70.]
|
[21] |
林伯韬, 史璨, 庄丽, 等. 基于真三轴实验研究超稠油储集层压裂裂缝扩展规律[J]. 石油勘探与开发, 2020, 47(3): 608-616.
doi: 10.11698/PED.2020.03.17
|
|
[LIN B T, SHI C, ZHUANG L, et al. Study on fracture propagation behavior in ultra-heavy oil reservoirs based on true triaxial experiments[J]. Petroleum Exploration and Development, 2020, 47(3): 608-616.]
|
[22] |
WANG F, LIU W, DENG J G, et al. Hydraulic fracture propagation research in layered rocks based on 3D FEM modeling and laboratory experiments[J]. Geoenergy Science and Engineering, 2024, 234: 212670.
|
[23] |
XIE J, TANG J, YONG R, et al. A 3-D hydraulic fracture propagation model applied for shale gas reservoirs with multiple bedding planes[J]. Engineering Fracture Mechanics, 2020, 228: 106872.
|
[24] |
李建民, 佟亮, 贾海正, 等. 基于离散元方法的层理发育地层水力裂缝扩展规律[J]. 科学技术与工程, 2023, 23(13): 5515-5521.
|
|
[LI J M, TONG L, JIA H Z, et al. Hydraulic fractures propagation in bedding developed stratum based on distinct element method[J]. Science Technology and Engineering, 2023, 23(13): 5515-5521.]
|
[25] |
刘先珊, 钱磊, 李满, 等. 层理面遇天然裂隙的页岩储层水力裂缝网络复杂性研究[J]. 工程地质学报, 2024, 32(4): 1309-1321.
|
|
[LIU X S, QIAN L, LI M, et al. Study on the complexity of hydraulic fracture network in shale reservoirs considering the bedding planes encoutering the natural fractures[J]. Journal of Engineering and Geology, 2024, 32(4): 1309-1321.]
|
[26] |
谢锦阳, 侯冰, 何明舫, 等. 苏里格砂泥薄互储层缝控压裂造缝机制及穿层判别准则[J]. 石油勘探与开发, 2024, 51(05): 1150-1159.
|
|
[XIE J Y, HOU B, HE M F, et al. Fracture-controlled fracturing mechanism and penetration discrimination criteria for thin sand-mud interbedded reservoirs in Sulige gas field, Ordos Basin, China[J]. Petroleum Exploration and Development, 2024, 51(5): 1150-1159.]
|
[27] |
李扬, 邓金根, 蔚宝华, 等. 储/隔层岩石及层间界面性质对压裂缝高的影响[J]. 石油钻探技术, 2014, 42(6): 80-86.
|
|
[LI Y, DENG J G, YU B H, et al. Effects of reservoir rock/barrier and interfacial properties on hydraulic fracture height containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86.]
|
[28] |
孙博, 周博. 胶结型天然裂缝对水力裂缝影响的数值计算模型及机理[J]. 石油学报, 2019, 40(11): 1376-1387.
doi: 10.7623/syxb201911008
|
|
[SUN B, ZHOU B. Numerical modeling and mechanism analysis of a cemented natural fracture on hydraulic fracture[J]. Acta Petrolei Sinica, 2019, 40(11): 1376-1387.]
doi: 10.7623/syxb201911008
|
[29] |
王燚钊, 侯冰, 王栋, 等. 页岩油多储集层穿层压裂缝高扩展特征[J]. 石油勘探与开发, 2021, 48(2): 402-410.
doi: 10.11698/PED.2021.02.17
|
|
[WANG Y Z, HOU B, WANG D, et al. Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs[J]. Petroleum Exploration and Development, 2021, 48(2): 402-410.]
|
[30] |
DENG Y H, XIA Y, WANG D, et al. A study of hydraulic fracture propagation in laminated shale using extended finite element method[J]. Computers and Geotechnics, 2024, 166: 105961.
|
[31] |
崔树辉, 吴鹏, 赵霏, 等. 鄂尔多斯盆地东缘临兴区块页岩气成藏因素分析及富集区预测[J]. 现代地质, 2022, 36(5): 1271-1280.
|
|
[CUI S H, WU P, ZHAO F, et al. Shale gas accumulation factors and enrichment area prediction in Linxing block, Eastern Margin of the Ordos Basin[J]. Geoscience, 2022, 36 (5): 1271-1280.]
|
[32] |
吴鹏, 曹地, 朱光辉, 等. 鄂尔多斯盆地东缘临兴地区海陆过渡相页岩气地质特征及成藏潜力[J]. 煤田地质与勘探, 2021, 49(6): 24-34.
|
|
[WU P, CAO D, ZHU G H, et al. Geological characteristics and reservoir-forming potential of shale gas of transitional facies in Linxing area, eastern margin of Ordos Basin[J]. Coal Geology & Exploration, 2021, 49(6): 24-34.]
|
[33] |
HOU B, ZHANG R X, ZENG Y J, et al. Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress difference[J]. Journal of Petroleum Science and Engineering, 2018, 170: 231-243.
|
[34] |
吴鹏, 高丽军, 李勇, 等. 海陆过渡相岩性频繁互层型页岩气潜力评价方法——以鄂尔多斯盆地临兴区块下二叠统山西组为例[J]. 天然气工业, 2022, 42(2): 28-39.
|
|
[WU P, GAO L J, LI Y, et al. An evaluation method for shale gas potential of marine-continent transitional facies with frequent interbedded lithology: A case study on the Lower Permian Shanxi Formation in Linxing Block of the Ordos Basin[J]. Natural Gas Industry, 2022, 42(2): 28-39.]
|
[35] |
蒋宇静, 李博, 王刚, 等. 岩石裂隙渗流特性试验研究的新进展[J]. 岩石力学与工程学报, 2008, 27(12): 2377-2386.
|
|
[JIANG Y J, LI B, WANG G, et al. New advances in experimental study on seepage characteristics of rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2377-2386.]
|