[1] |
梁永图, 邱睿, 涂仁福, 等. 中国油气管网运行关键技术及展望[J]. 石油科学通报, 2024, 9(2): 213-223.
|
|
[LIANG Y T, QIU R, TU R F, et al. Key technologies and prospects of operation for oil and gas pipeline networks in China[J]. Petroleum Science Bulletin, 2024, 9(2): 213-223.]
|
[2] |
KIYINGI W, GUO J, XIONG R, et al. Crude oil wax: A review on formation, experimentation, prediction, and remediation techniques[J]. Petroleum Science, 2022, 19(5): 2343-2357.
|
[3] |
TOLMASQUIM S, NIECKELE A. Design and control of pig operations through pipelines[J]. Journal of Petroleum Science and Engineering, 2008, 62(3): 102-110.
|
[4] |
董绍华, 王东营, 董国亮, 等. 管道内腐蚀直接评估技术与实践应用[J]. 石油科学通报, 2016, 1(3): 459-470.
|
|
[DONG S H, WANG D Y, DONG G L, et al. Direct assessment technology and practical application of internal corrosion in pipelines[J]. Petroleum Science Bulletin, 2016, 1(3): 459-470.]
|
[5] |
WU H L, VAN SPRONSEN G, KLAUS E H, et al. By-pass pig passes test for two-phase pipelines[J]. Oil and Gas Journal, 1996, 94(42).
|
[6] |
NIECKELE A O, BRAGA A M B, AZEVEDO L F A. Transient pig motion through gas and liquid pipelines[J]. Journal of Energy Resources Technology, 2001, 123(4): 260-269.
|
[7] |
CORDELL J, VANZANT H. All about pigging: The design of pipelines and facilities for conventional and intelligent pigging and a guide to pig selection, operation and maintenance and to pipeline pigging services[M]: On-Stream Systems Limited, 2000.
|
[8] |
HOLDEN E M, GRIMES K. Inspection challenges: Pigs versus pipes[C]// International Pipeline Conference. American Society of Mechanical Engineers, 1996, 40207: 353-367.
|
[9] |
CHEN J, LUO X, ZHANG H. Experimental study on movement characteristics of bypass pig[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 212-223.
|
[10] |
陈建恒, 何利民, 罗小明, 等. 射流清管器等效压降系数模型的建立及分析验证[J]. 中国海上油气, 2017, 29(5): 134-140.
|
|
[CHEN J H, HE L M, LUO X M, et al. Establishment and analysis verification of the equivalent pressure drop coefficient model for jetting pipeline cleaners[J]. China Offshore Oil and Gas, 2017, 29(5): 134-140.]
|
[11] |
CAMPBELL D C. Variable speed pig for pipelines[J]. 1992.
|
[12] |
AZEVEDO L F A, BRACM A M B, NIECKELE A O, et al. Simple hydrodynamic models for the prediction of pig motions in pipelines[C]// Offshore technology conference. OTC, 1996: OTC-8232-MS.
|
[13] |
NGUYEN T T, KIM D K, RHO Y W, et al. Dynamic modeling and its analysis for pig flow through curved section in natural gas pipeline[C]// Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515). IEEE, 2001: 492-497.
|
[14] |
KIM D K, CHO S H, PARK S S, et al. Verification of the theoretical model for analyzing dynamic behavior of the pig from actual pigging[J]. KSME International Journal, 2003, 17: 1349-1357.
|
[15] |
ESMAEILZADEH F, MOWLA D, ASEMANI M. Modeling of pig operations in natural gas and liquid pipeline[C]// SPE Annual Technical Conference and Exhibition. SPE, 2006: SPE-102049-MS.
|
[16] |
RAHE F. Optimizing the active speed control unit for in-line inspection tools in gas[C]// International Pipeline Conference. 2006, 42622: 377-383.
|
[17] |
PODGORBUNSKIKH A M. Devices for automated regulation of the velocity of in-tube pig flaw detectors[J]. Russian Journal of Nondestructive Testing, 2008, 44(5): 343-350.
|
[18] |
MIRSHAMSI M, RAFEEYAN M. Speed control of pipeline pig using the QFT method[J]. Oil & Gas Science and Technology, 2012, 67(4): 693-701.
|
[19] |
CHEN J, HE L, LUO X, et al. Characterization of bypass pig velocity in gas pipeline: an experimental and analytical study[J]. Journal of Natural Gas Science and Engineering, 2020, 73: 103059.
|
[20] |
GUZMÁN J L, HÄGGLUND T, et al. Tuning rules for feedforward control from measurable disturbances combined with PID control: a review[J]. International Journal of Control, 2024, 97(1): 2-15.
|
[21] |
KLUSKA J, ŻABIŃSKI T, et al. PID-like adaptive fuzzy controller design based on absolute stability criterion[J]. IEEE Transactions on Fuzzy Systems, 2019, 28(3): 523-533.
|
[22] |
RODRÍGUEZ-ABREO O, RODRÍGUEZ-RESÉNDIZ J, et al. Self-tuning neural network PID with dynamic response control[J]. IEEE Access, 2021, 9: 65206-65215.
|
[23] |
MIRSHAMSI M, RAFEEYAN M. Speed control of inspection pig in gas pipelines using sliding mode control[J]. Journal of Process Control, 2019, 77: 134-140.
|
[24] |
LEE Y, SKLIAR M, LEE M. Analytical method of PID controller design for parallel cascade control[J]. Journal of Process Control, 2006, 16(8): 809-818.
|
[25] |
MIZUMOTO I, LIU L, TANAKA H, et al. Adaptive PID control system design for non-linear systems[J]. International Journal of Modelling, Identification and Control, 2009, 6(3): 230-238.
|
[26] |
ZHU X, WANG H, ZHANG Y, et al. Enhanced speed control of pipeline pigs with adjustable bypass using quantitative feedback theory and cascade PID algorithm[J]. Journal of Pipeline Science and Engineering, 2024: 100231.
|
[27] |
TJOKRO S, SHAH S L. Adaptive PID control[C]// 1985 American Control Conference. IEEE, 1985: 1528-1534.
|
[28] |
DAI H K, LANDRY B, et al. Lyapunov-stable neural-network control[J]. Arxiv Preprint Arxiv: 2109. 14152, 2021.
|
[29] |
DE LA SEN M. Asymptotic hyperstability and input-Output energy positivity of a single-input single-output system which incorporates a memoryless non-linear device in the feed-forward loop[J]. Mathematics, 2022, 10(12): 2051.
|
[30] |
SCHILLING R J, CARROLL J J, AL-AJLOUNI A F. Approximation of nonlinear systems with radial basis function neural networks[J]. IEEE Transactions on Neural Networks, 2001, 12(1): 1-15.
doi: 10.1109/72.896792
pmid: 18244359
|
[31] |
WANG H R, WANG L, LIAO Y, et al. Research on engine speed control system based on fuzzy adaptive PID controller[J]. CIRP Annals, 2019, 19(6): 1080-1087.
|
[32] |
KUMAR R, SRIVASTAVA S, GUPTA P R J, et al. Comparative study of neural networks for dynamic nonlinear systems identification[J]. Soft Computing, 2019, 23(1): 101-114.
|
[33] |
GUTIERREZ L B, LEWIS F L, LOWE J A. Implementation of a neural network tracking controller for a single flexible link: comparison with PD and PID controllers[J]. IEEE Transactions on Industrial Electronics, 1998, 45(2): 307-318.
|
[34] |
FREITAS V C G D, ARAUJO V G D, CRISÓSTOMO D C C, et al. Velocity prediction of a pipeline inspection gauge (PIG) with machine learning[J]. Sensors, 2022, 22(23): 9162.
|
[35] |
ZHU X X, FU C M, WANG Y T, et al. Experimental research on the contact force of the bi-directional pig in oil and gas pipeline[J]. Petroleum Science, 2023, 20(1): 474-481.
|
[36] |
ELHASHIMI M A, ZHANG X, ABBASI B. Empirical prediction of saline water atomization pressure loss and spray phase change using local flow pressure analysis[J]. Desalination, 2021, 514: 115-156.
|
[37] |
NGUYEN T T, KIM B S, YOO R H, et al. Modeling and simulation for PIG with bypass flow control in natural gas pipeline[J]. KSME International Journal, 2001, 15(9): 1302-1310.
|
[38] |
KHALIL H K. Lyapunov stability[J]. Control systems, robotics and automation, 2009, 12: 115.
|
[39] |
LIU Y, ZHAO Z, GUO F. Adaptive Lyapunov-Based backstepping control for an axially moving system with input saturation[J]. IET Control Theory & Applications, 2016, 10(16): 2083-2092.
|