[1] |
唐华风, 王璞珺, 边伟华, 等. 火山岩储层地质研究回顾[J]. 石油学报, 2020, 41(12): 1744-1773.
doi: 10.7623/syxb202012026
|
|
[TANG H F, WANG P J, BIAN W H, et al. Review of volcanic reservoir geology[J]. Acta Petrolei Sinica, 2020, 41(12): 1744-1773.]
doi: 10.7623/syxb202012026
|
[2] |
TANG H F, TIAN Z W, GAO Y F, et al. Review of volcanic reservoir geology in China[J]. Earth-Science Reviews, 2022, 232: 104158.
|
[3] |
齐洪岩, 李亮, 张吉辉, 等. 准噶尔盆地车471井区亿吨级火山岩油气藏发现历程及意义[J]. 中国石油和化工标准与质量, 2019, 39(8): 98-99.
|
|
[QI H Y, LI L, ZHANG J H, et al. Discovery process and significance of the hundred-million-ton volcanic oil and gas reservoir in Well Che 471 area, Junggar Basin[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(8): 98-99.]
|
[4] |
姬建飞, 袁胜斌, 杨毅, 等. 基于XRF技术的fisher判别法在火山岩岩性识别中的应用[J]. 中国石油和化工标准与质量, 2019, 39(3): 240-241+244.
|
|
[JI J F, YUAN S B, YANG Y, et al. Application of fisher discriminant method based on XRF technology in volcanic rock lithology identification[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(3): 240-241+244.]
|
[5] |
李呈呈, 张克非, 马霄一, 等. 深层中基性火山岩气藏岩石物理特征研究[J]. 地球物理学进展, 2025, 40(2): 0580-0591.
|
|
[LI C C, ZHANG K F, MA X Y, et al. Petrophysical characteristics of deep intermediate-basic volcanic gas reservoir[J]. Progress in Geophysics, 2025, 40(2): 0580-0591.]
|
[6] |
YAO W J, CHEN Z H, HU T T, et al. Storage space, pore structure, and primary control of igneous rock reservoirs in Chepaizi Bulge, Junggar Basin, western China: Significance for oil accumulation[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107836.
|
[7] |
王敏, 曹玥, 李万才, 等. 基于孔隙结构和核磁测井建立火山岩储层分类标准——以松南断陷查干花气田为例[J]. 油气藏评价与开发, 2024, 14(2): 216-223+236.
|
|
[WANG M, CAO Y, LI W C, et al. Establishing classification standards for volcanic reservoirs based on pore structure and nuclear magnetic logging: A case study of Chaganhua Gas Field in Songnan Fault Depression[J]. Reservoir Evaluation and Development, 2024, 14(2): 216-223+236.]
|
[8] |
马澳. 基于测录井资料的渤海海域中生界潜山火山岩储层流体识别方法[D]. 荆州: 长江大学, 2024.
|
|
[MA A. Fluid identification method of Mesozoic latent volcanic rock reservoir in Bohai Sea area based on logging data[D]. Jingzhou: Yangtze University, 2024.]
|
[9] |
赖锦, 宋翔羽, 杨薰, 等. 致密砂岩气储层测井综合评价技术研究进展[J]. 石油学报, 2025, 46(1): 220-235.
doi: 10.7623/syxb202501015
|
|
[LAI J, SONG X Y, YANG X, et al. Research progresses of comprehensive well logging evaluation methods of tight gas sandstone reservoirs[J]. Acta Petrolei Sinica, 2025, 46(1): 220-235.]
doi: 10.7623/syxb202501015
|
[10] |
信毅, 王贵文, 刘秉昌, 等. 库车坳陷侏罗系致密砂岩气藏“三品质”测井评价[J]. 地球科学, 2024, 49(6): 2085-2102.
|
|
[XIN Y, WANG G W, LIU B C, et al. Well logging evaluation of “three quality” of Jurassic tight gas sandstone reservoirs in Kuqa Depression[J]. Earth Science, 2024, 49(6): 2085-2102.]
|
[11] |
罗旭东, 邓世坤, 冯芸, 等. 火山岩储层分类方法在克百断裂带一区石炭系的应用[J]. 特种油气藏, 2023, 30(1): 57-64.
doi: 10.3969/j.issn.1006-6535.2023.01.008
|
|
[LUO X D, DENG S K, FENG Y, et al. Application of volcanic rock reservoir classification method to carboniferous system in Kebai Fault area 1[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 57-64.]
|
[12] |
陈欢庆, 丁超, 杜宜静, 等. 储层评价研究进展[J]. 地质科技情报, 2015, 34(5): 66-74.
|
|
[CHEN H Q, DING C, DU Y J, et al. Advances of reservoir evaluation researches[J]. Geological Science and Technology Information, 2015, 34(5): 66-74.]
|
[13] |
邵蓉波, 史燕青, 周军, 等. 地球物理测井反问题机器学习数据集的构建方法研究[J]. 地球物理学报, 2023, 66(7): 3086-3101.
|
|
[SHAO R B, SHI Y Q, ZHOU J, et al. Construction of machine learning data set for geophysical logging inversion[J]. Chinese Journal of Geophysics, 2023, 66(07): 3086-3101.]
|
[14] |
胡明毅, 李士祥, 魏国齐, 等. 川西前陆盆地上三叠统须家河组致密砂岩储层评价[J]. 天然气地球科学, 2006(4): 456-458+462.
doi: 10.11764/j.issn.1672-1926.2006.04.456
|
|
[HU M Y, LI S X, WEI G Q, et al. Reservoir apprecisal of tight sandstones of Upper Triassic Xujiahe Formation in the western Sichuan foreland basin[J]. Natural Gas Geoscience, 2006(4): 456-458+462.]
|
[15] |
朱春俊, 王延斌. 大牛地气田低渗储层成因及评价[J]. 西南石油大学学报(自然科学版), 2011, 33(1): 49-56+11-12.
doi: 10.3863/j.issn.1674-5086.2011.01.009
|
|
[ZHU C J, WANG Y B. Reservior genesis and evaluation for the low porosity and permeability sandstone in the Daniudi gasfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(1): 49-56+11-12.]
|
[16] |
KASSEM A A, OSMAN O A, NABAWY B S, et al. Microfacies analysis and reservoir discrimination of channelized carbonate platform systems: An example from the Turonian Wata Formation, Gulf of Suez, Egypt[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110272.
|
[17] |
RADWAN A A, NABAWY B S, ABDELMAKSOUD A, et al. Integrated sedimentological and petrophysical characterization for clastic reservoirs: A case study from New Zealand[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103797.
|
[18] |
SZABÓ N P, NEHÉZ K, HORNYÁK O, et al. Cluster analysis of core measurements using heterogeneous data sources: An application to complex Miocene reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 178: 575-585.
|
[19] |
LI Y, ZHANG T S, DAI Z Y, et al. Quantitative evaluation methods of tight reservoirs based on multi-feature fusion: A case study of the fourth member of Shahejie Formation in Liaohe Depression[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108090.
|
[20] |
JIANG D L, CHEN H, XING J P, et al. A novel method of quantitative evaluation and comprehensive classification of low permeability-tight oil reservoirs: A case study of Jidong Oilfield, China[J]. Petroleum Science, 2022, 19(4): 1527-1541.
|
[21] |
PENG H, XIONG X, WU M, et al. Reservoir computing models based on spiking neural P systems for time series classification[J]. Neural Networks, 2024, 169: 274-281.
|
[22] |
WU B H, XIE R H, XIAO L Z, et al. Integrated classification method of tight sandstone reservoir based on principal component analysis- simulated annealing genetic algorithm-fuzzy cluster means[J]. Petroleum Science, 2023, 20(5): 2747-2758.
|
[23] |
LI J J, LUO C H, YANG T H, et al. Control of volcanic lithofacies on play fairways: A case study of the Huoshiling Formation in the Dehui faulted depression, southern Songliao Basin, China[J]. Energy Geoscience, 2025, 6(2): 100391.
|
[24] |
TANG H F, WANG L L, WU H C, et al. Possible geological interpretation of the volcanic seismic facies based on volcanostratigraphy elements: A case analysis of the Yingcheng Formation in the Changling Fault Depression, Songliao Basin, NE China[J]. Geoenergy Science and Engineering, 2023, 225: 211668.
|
[25] |
MORADI S, CHRISTIANSEN E H, JIANG S Y, et al. Petrogenesis and tectonic implications of Cenozoic mafic volcanic rocks in the Kahak area of central Urumieh-Dokhtar magmatic arc, Iran[J]. Journal of Asian Earth Sciences, 2022, 239: 105404.
|
[26] |
王海峰, 户景松, 邹明倬, 等. 渤海湾盆地莱州湾凹陷南斜坡中生界火山岩相模式和储层特征[J]. 地质学报, 2024, 98(6): 1814-1828.
|
|
[WANG H F, HU J S, ZOU M Z, et al. Mesozoic volcanic facies model and reservoir characteristics in the southern slope of Laizhou Bay depression, Bohai Bay basin[J]. Acta Geologica Sinica, 2024, 98(6): 1814-1828.]
|
[27] |
陈欢庆, 石为为, 杜宜静, 等. 火山岩储层岩相研究进展[J]. 地质科学, 2022, 57(4): 1307-1323.
|
|
[CHEN H Q, SHI W W, DU Y J, et al. Advances in volcanic reservoir lithofacies research[J]. Chinese Journal of Geology, 2022, 57(4): 1307-1323.]
|
[28] |
王璞珺, 缴洋洋, 杨凯凯, 等. 准噶尔盆地火山岩分类研究与应用[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1056-1070.
|
|
[WANG P J, JIAO Y Y, YANG K K, et al. Classification of volcanogenic successions and its application to volcanic reservoir exploration in the Junggar Basin, NW China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1056-1070.]
|
[29] |
LIU Z L, WU H P, CHEN R J. Evaluation of volcanic reservoir heterogeneity in eastern sag of Liaohe Basin based on electrical image logs[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110115.
|
[30] |
马尚伟, 罗静兰, 陈春勇, 等. 火山岩储层微观孔隙结构分类评价——以准噶尔盆地东部西泉地区石炭系火山岩为例[J]. 石油实验地质, 2017, 39(05): 647-654.
|
|
[MA S W, LUO J L, CHEN C Y, et al. Classification and evaluation of micro pore structure of volcanic rock reservoirs: A case study of the Carboniferous volcanic reservoirs in Xiquan area, eastern Junggar Basin[J]. Petroleum Geology & Experiment, 2017, 39(05): 647-654.]
|
[31] |
于春勇, 屈凯旋, 郭青松, 等. 松辽盆地北部致密火山岩孔隙分形结构特征及储层综合评价[J]. 录井工程, 2024, 35(3): 113-120.
doi: 10.3969/j.issn.1672-9803.2024.03.016
|
|
[YU C Y, QU K X, GUO Q S, et al. Pore fractal structure characteristics and reservoir comprehensive evaluation of tight volcanic rocks in northern Songliao Basin[J]. Mud Logging Engineering, 2024, 35(3): 113-120.]
doi: 10.3969/j.issn.1672-9803.2024.03.016
|
[32] |
范谭广. 三塘湖盆地哈尔加乌组火山岩储集层孔隙特征及成因[J]. 新疆石油地质, 2020, 41(6): 658-665.
|
|
[FAN T G. Characteristics and genesis of pores in volcanic reservoirs of Haerjiawu Formation in Santanghu Basin[J]. Xinjiang Petroleum Geology, 2020, 41(6): 658-665.]
|
[33] |
WANG W F, WANG Z Z, LEUNG J L, et al. Petrophysical rock typing based on deep learning network and hierarchical clustering for volcanic reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110017.
|
[34] |
ZHOU J, LIU B, SHAO M L, et al. Pore structure analysis and classification of pyroclastic reservoirs in the Dehui fault depression based on experimental and well-logging data[J]. Geoenergy Science and Engineering, 2023, 224: 211620.
|
[35] |
SANDERSON D J, PEACOCK D P, NIXON C W. Fracture sets and sequencing[J]. Earth-Science Reviews, 2024, 257: 104888.
|
[36] |
帕哈丁·麦麦提依力, 韦波, 李鑫, 等. 沙帐断褶带巴山组火山岩储层特征及影响因素[J/OL]. 西南石油大学学报(自然科学版), 2024.
|
|
[PAHADING M, WEI B, LI X, et al. Volcanic reservoir characteristics and influencing factors of carboniferous Bashan Formationin Shazhang fault-fold belt, eastern Junggar Basin[J/OL]Journal of Southwest Petroleum University (Science & Technology Edition), 2024.]
|
[37] |
ZHOU H, WANG B, ZHANG L, et al. Quantitative characterization and fracture morphology in reservoirs with various lithologies: An experimental investigation[J]. Geoenergy Science and Engineering, 2024, 239: 212911.
|
[38] |
肖大坤, 范廷恩, 范洪军, 等. 变质岩潜山双重介质油藏储层建模及质控方法——以渤海湾A油田为例[J]. 中国海上油气, 2020, 32(6): 82-89.
|
|
[XIAO D K, FAN T E, FAN H J, et al. Geological modeling and quality control methods of metamorphic buried hill dual medium reservoir: A case study of oilfield A, Bohai bay[J]. China Offshore Oil and Gas, 2020, 32(6): 82-89.]
|
[39] |
LANG M D, ZHANG Z C, CHEN Z, et al. Classification and nomenclature of volcanic rocks using immobile elements: A novel approach based on big data analysis[J]. Lithos, 2023, 454-455: 107274.
|
[40] |
徐金华, 宿云国, 文发旺, 等. 克拉玛依油田九5区石炭系火山岩储层分类及开发实践[J]. 石油地质与工程, 2015, 29(3): 64-68+147-148.
|
|
[XU J H, SU Y G, WEN F W, et al. Classification and development practice of Carboniferous volcanic reservoirs in Block Jiu 5, Karamay Oilfield[J]. Petroleum Geology and Engineering, 2015, 29(3): 64-68+147-148.]
|
[41] |
甘笑非, 袁权, 邓庄, 等. 磨溪区块台缘带灯四气藏储层类型划分及其产能特征研究[C]. 第32届全国天然气学术年会, 重庆, 2020.
|
|
[GAN X F, YUAN Q, DENG Z, et al. Classification of reservoir types and productivity characteristics of the Deng-4 gas reservoir in the platform margin zone of the Moxi Block[C]. The 32nd National Natural Gas Academic Annual Conference, Chongqing, 2020.]
|
[42] |
蒋志斌, 李永军, 覃建华, 等. 新疆乌尔禾哈拉阿拉特组火山岩[M]. 北京: 地质出版社, 2023.
|
|
[JIANG Z B, LI Y J, QIN J H, et al. Volcanic rocks of Halaarat formation in Urho, Xinjiang[M]. Beijing: Geology Press, 2023.]
|
[43] |
单玄龙, 徐长贵, 衣健, 等. 中国近海典型含油气盆地中生代岩浆活动与岩浆岩潜山油气藏[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1773-1787.
|
|
[SHAN X L, XU C G, YI J, et al. Mesozoic magmatic activities and hydrocarbon accumulations in magmatic buried hills in typical offshore oil and gas basins of China[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(6): 1773-1787.]
|
[44] |
肖明国, 郭建华, 焦鹏, 等. 辽河盆地大洼油田火山岩特征及其测井识别方法[J]. 中南大学学报(自然科学版), 2019, 50(4): 915-922.
|
|
[XIAO M G, GUO J H, JIAO P, et al. Characteristics of mesozoic and cenozoic volcanic rocks and its logging identification in Dawa Oil Field of Liaohe Basin[J]. Journal of Central South University (Science and Technology), 2019, 50(4): 915-922.]
|
[45] |
潘虹, 李晓山, 钱川川, 等. 准噶尔盆地克百断裂带石炭系内幕型火山岩储层特征及成藏规律[J]. 东北石油大学学报, 2022, 46(1): 62-75+122+9-10.
|
|
[PAN H, LI X S, QIAN C C, et al. Characteristic and accumulation patterns of Carboniferous inside-type volcanic reservoir in Kebai fault zone of Junggar Basin[J]. Journal Of Northeast Petroleum University, 2022, 46(1): 62-75+122+9-10.]
|
[46] |
石朝龙, 姜旭, 寇园园, 等. 页岩气渗流理论模型研究现状与展望[J]. 石油化工应用, 2021, 40(8): 10-16.
|
|
[SHI C L, JIANG X, KOU Y Y, et al. Research status and prospect of theoretical model of shale gas seepage[J]. Petrochemical Industry Application, 2021, 40(8): 10-16.]
|
[47] |
孙龙德, 王小军, 冯子辉, 等. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365.
|
|
[SUN L D, WANG X J, FENG Z H, et al. Formation mechanisms of nano-scale pores/fissures and shale oil enrichment characteristics for Gulong shale, Songliao Basin[J]. Oil & Gas Geology, 2023, 44(6): 1350-1365.]
|
[48] |
徐燕东. 考虑重力因素的断溶体储层“井-洞-缝”模型试井解释方法[J]. 计算物理, 2020, 37(2): 189-197.
doi: 10.19596/j.cnki.1001-246x.8032
|
|
[XU Y D. An Interpretation method with“well-cave-crack”model of dissolves reservoir considering gravity factors[J]. Chinese Journal of Computational Physics, 2020, 37(2): 189-197.]
|
[49] |
关耀, 叶青, 张冲, 等. 高压低渗透碎屑岩储层孔隙结构特征及分类评价——以莺歌海盆地东方A-1区黄流组一段为例[J]. 东北石油大学学报, 2024, 48(5): 75-89+135-137.
|
|
[GUAN Y, YE Q, ZHANG C, et al. Pore structure characteristics and classification evaluation of high-pressure and low-permeability clastic reservoir: Taking the first member of Huangliu Formation in Dongfang A-Area of Yinggehai Basin as an example[J]. Journal of Northeast Petroleum University, 2024, 48(5): 75-89+135-137.]
|
[50] |
ZHANG S H, TANG S H, ZHANG J P, et al. Pore structure characteristics of China sapropelic coal and their development influence factors[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 370-384.
|
[51] |
QI X J, WANG S J, FANG C S, et al. Machine learning and SHAP value interpretation for predicting comorbidity of cardiovascular disease and cancer with dietary antioxidants[J]. Redox Biology, 2025, 79: 103470.
|
[52] |
LIU J, PENG C H, ZHANG J X. Understanding the relationship between rural morphology and photovoltaic (PV) potential in traditional and non-traditional building clusters using shapley additive exPlanations (SHAP) values[J]. Applied Energy, 2025, 380: 125091.
|
[53] |
LIU P L, HAN S, RONG N. Frequency stability prediction of renewable energy penetrated power systems using CoAtNet and SHAP values[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106403.
|
[54] |
王博, 颜廷巍, 李欢, 等. 耦合相场与裂隙流方法的裂缝扩展—渗流一体化模拟[J]. 石油科学通报, 2025, 10(2): 192-205.
|
|
[WANG B, YAN T W, LI H, et al. The integrated simulation of fracture propagation and seepage studied by using a coupled phase field and fracture flow method[J]. Petroleum Science Bulletin, 2025, 10(2): 192-205.]
|
[55] |
季岭, 刘钰铭, 郭小龙, 等. 枣园油田孔缝型油藏单井产能地质控制因素研究[J]. 石油科学通报, 2021, 6(4): 566-575.
|
|
[JI L, LIU Y M, GUO X L, et al. Geological controlling factors of single well productivity in perforated and fractured reservoir in Zaoyuan oilfield[J]. Petroleum Science Bulletin, 2021, 6(4): 566-575.]
|
[56] |
王宵宇, 廖广志, 黄文松, 等. 基于机器学习的页岩总有机碳含量评价方法[J]. 石油科学通报, 2025, 10(2): 392-403.
|
|
[WANG X Y, LIAO G Z, HUANG W S, et al. Evaluation method of total organic carbon content in shale based on machine learning[J]. Petroleum Science Bulletin, 2025, 10(2): 392-403.]
|