| [1] |
KENETI S. W. Shear behavior of the montney shale under double-shear test. 45th US Rock Mechanics Geomechanics Symposium[C]. San Francisco:American Rock Mechanics Association, 2011.
|
| [2] |
HENG S, GUO Y, YANG C, et al. Experimental and theoretical study of the anisotropic properties of shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74: 58-68.
doi: 10.1016/j.ijrmms.2015.01.003
URL
|
| [3] |
朱颖. 油页岩层理对其力学特性及裂缝起裂与扩展的影响研究[D]. 吉林: 吉林大学, 2022.
|
|
[ZHU Y. Study on the influence of oil shale bedding on its mechanical properties and fracture initiation and propagation[D]. Jilin: Jilin University, 2022.]
|
| [4] |
马天寿, 陈平. 层理页岩水平井井周剪切失稳区域预测方法[J]. 石油钻探技术, 2014, 42(5): 26-36.
|
|
[MA T S, CHEN P. Prediction method of shear instability region around the borehole for horizontal wells in bedding shale[J]. Petroleum Drilling Techniques, 2014, 42(5): 26-36.]
|
| [5] |
袁和义, 陈平. 基于直剪试验的页岩水化作用的强度弱化规律[J]. 天然气工业, 2015, 35(11): 71-77.
|
|
[YUAN H Y, CHEN P. Strength weakening rules of shale hydration based on direct shear tests[J]. Nat Gas Ind, 2015, 35(11): 71-77.]
|
| [6] |
LU H J, XIE H P, LUO Y, et al. Failure characterization of Longmaxi shale under direct shear mode loadings[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 148.
|
| [7] |
ZHANG A, ZHANG R, LU H, et al. Anisotropy in shear failure of shale: An insight from microcracking to macrorupture[J]. Measurement, 2025, 243116391-116391.
|
| [8] |
ZHENG B, QI S, GUO S, et al. Experimental study of direct shear properties of anisotropic reservoir shale[J]. Energies, 2024, 17(8): 1977-1996.
doi: 10.3390/en17081977
URL
|
| [9] |
FAN Z D, XIE H P, REN L, et al. Anisotropy in shear-sliding fracture behavior of layered shale under different normal stress conditions[J]. Journal of Central South University, 2022, 29(11): 3678-3694.
doi: 10.1007/s11771-022-5156-9
|
| [10] |
XIE Y, HOU Z M, LIU H, et al. Anisotropic time-dependent behaviors of shale under direct shearing and associated empirical creep models[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(4): 1262-1279.
doi: 10.1016/j.jrmge.2023.05.001
URL
|
| [11] |
张清照, 沈明荣, 丁文其. 结构面在剪切状态下的力学特性研究[J]. 水文地质工程地质, 2012, 39(2): 37-42.
|
|
[ZHANG Q Z, SHEN M R, DING W Q, et al. Study on the mechanical properties of rock mass discontinuity under shear condition[J]. Hydrogeology and Engineering Geology, 2012, 39(2): 37-42.]
|
| [12] |
李存宝, 谢和平, 谢凌志. 页岩起裂应力和裂纹损伤应力的试验及理论[J]. 煤炭学报, 2017, 42(4): 969-976.
|
|
[LI C B, XIE H P, XIE L Z. Experimental and theoretical study on the shale crack initiation stress and crack damage stress[J]. Journal of China Coal Society, 2017, 42(4): 969-976.]
|
| [13] |
衡帅, 李贤忠, 刘晓, 等. 直剪条件下页岩裂缝扩展演化机制研究[J]. 岩石力学与工程学报, 2019, 38(12): 2438-2450.
|
|
[HENG S, LI X Z, LIU X, et al. Study on the propagation mechanisms of shale fractures under direct shear conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2438-2450.]
|
| [14] |
刘先珊, 李涛, 张立君, 等. 储层页岩直剪破断特性及细观演化机制[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 141-152.
|
|
[LIU X S, LI T, ZHANG L J, et al. Characteristics of shear fracturing and corresponding evolution mechanism at micro-scale in direct shear tests for reservoir shale[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(5): 141-152.]
|
| [15] |
YE C F, XIE H P, WU F, et al. Asymmetric failure mechanisms of anisotropic shale under direct shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 183: 105941-105958.
doi: 10.1016/j.ijrmms.2024.105941
URL
|
| [16] |
叶春烽, 谢和平, 李存宝. 直接剪切下页岩的各向异性破坏特征和强度预测模型[J]. 工程科学与技术, 2024, 56(2): 257-267.
|
|
[YE C F, XIE H P, LI C B. Anisotropic failure characteristics and strength prediction model of shale under direct shear[J]. Advanced Engineering Sciences, 2024, 56(2): 257-267.]
|
| [17] |
NI Q, POWRIE W, ZHANG X, et al. Effect of particle properties on soil behavior: 3-D numerical modeling of shear box tests[C]. San Francisco: American Rock Mechanics Association, 2000.
|
| [18] |
刘顺桂, 刘海宁, 王思敬, 等. 断续节理直剪试验与PFC-2D数值模拟分析[J]. 岩石力学与工程学报, 2008, (9): 1828-1836.
|
|
[LIU S G, LIU H N, WANG S J, et al. Direct shear tests and PFC2D numerical simulation of intermittent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, (9): 1828-1836.]
|
| [19] |
LIU S H. Simulating a direct shear box test by DEM[J]. Canadian Geotechnical Journal, 2011, 43(2): 155-168.
doi: 10.1139/t05-097
URL
|
| [20] |
LIU L W, LI H B, CHEN S H, et al. Effects of bedding planes on mechanical characteristics and crack evolution of rocks containing a single pre-existing flaw[J]. Engineering Geology, 2021, 293.
|
| [21] |
曹日红, 曹平, 林杭, 等. 不同粗糙度的节理直剪颗粒流分析[J]. 岩土力学, 2013, 34(s2): 456-463.
|
|
[CAO R H, CAO P, LIN H, et al. Particle flow analysis of direct shear tests on joints with different roughnesses[J]. Rock and Soil Mechanics, 2013, 34(s2): 456-463.]
|
| [22] |
曹凯, 刘远明. 节理岩体剪切力学行为细观模拟分析[J]. 中国水运, 2018, (9): 72-74.
|
|
[CAO K, LIU Y M. Mesoscopic simulation analysis of shear mechanical behavior of jointed rock masses[J]. China Water Transport, 2018, (9): 72-74.]
|
| [23] |
顾问, 丁伟, 施威, 等. 含软弱夹层岩体的剪切变形及破坏机理研究[J]. 河南科学, 2022, 40(8): 1229-1236.
|
|
[GU W, DING W, SHI W, et al. Shear deformation and failure mechanism of rock mass with weak interlayer[J]. Henan Science, 2022, 40(8): 1229-1236.]
|
| [24] |
雷瑞德, 粟罗, 胡超, 等. 基于矿物颗粒模型的裂隙煤岩微裂纹扩展演化规律研究[J]. 煤矿安全, 2024, 55(11): 154-165.
|
|
[LEI R D, SU L, HU C, et al. Study on the evolution law of microcrack propagation in fractured coal-rock based on mineral particle model[J]. Safety in Coal Mines, 2024, 55(11): 154-165.]
|
| [25] |
黄丹, 肖子龙, 汤文, 等. 不同开度节理大理岩破裂过程与断裂面形貌特征研究[J]. 工程地质学报, 2024, 32(6): 2239-2249.
|
|
[HUANG D, XIAO Z L, TANG W, et al. Study on fracture process and fracture surface morphology characteristics of marble with different joint openings[J]. Journal of Engineering Geology, 2024, 32(6): 2239-2249.]
|
| [26] |
FAN Z, ZHOU Q, NIE X, et al. 3D anisotropic microcracking mechanisms of shale subjected to direct shear loading: A numerical insight[J]. Engineering Fracture Mechanics, 2024, 298: 109950-109966.
doi: 10.1016/j.engfracmech.2024.109950
URL
|
| [27] |
WANG Z X, PENG J, KWOK C F, et al. Numerical simulation of failure and micro-cracking behavior of non-persistent rock joint under direct shear[J]. Engineering Geology, 2024, 342: 107760-107778.
doi: 10.1016/j.enggeo.2024.107760
URL
|
| [28] |
LI B, LI Q. Coupled FEM-DEM modeling of permeability evolution in rough fractured shale during shearing under varying confining pressures[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2025.
|
| [29] |
HOU C C, KANG Y S, LIU B, et al. Numerical investigation on shear mechanical characteristics of rock joints filled with clay-rich fillings[J]. Engineering Analysis with Boundary Elements, 2025, 178: 106303-106317.
doi: 10.1016/j.enganabound.2025.106303
URL
|
| [30] |
POTYONDY DO. The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions[J]. Geosystem Engineering, 2015, 18(1): 1-28.
doi: 10.1080/12269328.2014.998346
URL
|
| [31] |
HAZZARD J F, YOUNG R P. Moment tensors and micromechanical models[J]. Tectonophysics, 2002, 356(1): 181-197.
doi: 10.1016/S0040-1951(02)00384-0
URL
|
| [32] |
刘祥鑫, 张艳博, 梁正召, 等. 岩石破裂失稳声发射监测频段信息识别研究[J]. 岩土工程学报, 2017, 39(6): 1096-1105.
|
|
[LIU X X, ZHANG Y B, et al. Recognition of frequency information in acoustic emission monitoring of rock fracture[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1096-1105.]
|
| [33] |
刘建锋. 岩石声发射研究现状[J]. 四川师范大学学报(自然科学版), 2021, 44(5): 569-575.
|
|
[LIU J F. Research status of rock acoustic emission[J]. Journal of Sichuan Normal University (Natural Science), 2021, 44(5): 569-575.]
|
| [34] |
李玉山, 席伟, 张诏飞, 等. 岩石蠕变声发射特性研究现状与展望[J]. 甘肃地质, 2021, 30(2): 66-69.
|
|
[LI Y S, XI W, ZHANG Z F, et al. Research status and prospect of acoustic emission characteristics of rock creep[J]. Gansu Geology, 2021, 30(2): 66-69.]
|
| [35] |
ZHAI M Y, XUE L, FENG C B, et al. Effects of bedding planes on progressive failure of shales under uniaxial compression: Insights from acoustic emission characteristics[J]. Theoretical and Applied Fracture Mechanics, 2022, 119.
|
| [36] |
POTYONDY D O, CUNDALL P A. A bonded-particle model for fock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, (41): 1329-1364.
|