[1] |
ZHAN S Y, SU Y L, JIN Z H, et al. Study of liquid-liquid two-phase flow in hydrophilic nanochannels by molecular simulations and theoretical modeling[J]. Chemical Engineering Journal, 2020, 395: 125053.
|
[2] |
ZHANG W, FENG Q H, JIN Z H, et al. Molecular simulation study of oil-water two-phase fluid transport in shale inorganic nanopores[J]. Chemical Engineering Science, 2021, 245: 116948.
|
[3] |
MATTIA D, CALABRò F. Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions[J]. Microfluidics and Nanofluidics, 2012, 13(1): 125-130.
|
[4] |
田伟兵, 吴克柳, 陈掌星, 等. 纳米孔隙储集层动态渗吸数学模型[J]. 石油勘探与开发, 2022, 49(1): 148-155.
doi: 10.11698/PED.2022.01.13
|
|
[TIAN W B, WU K L, CHEN Z X, et al. Mathematical model of dynamic imbibition in nanoporous reservoirs[J]. Petroleum Exploration and Development. 2022, 49(1): 170-178.]
doi: 10.1016/S1876-3804(22)60013-2
|
[5] |
ZHANG T, LI X F, LI J, et al. A fractal model for gas-water relative permeability in inorganic shale with nanoscale pores[J]. Transport in Porous Media, 2018, 122(2): 305-331.
|
[6] |
THOMAS J A, MCGAUGHEY A J. Reassessing fast water transport through carbon nanotubes[J]. Nano Letters, 2008, 8(9): 2788-2793.
doi: 10.1021/nl8013617
pmid: 18665654
|
[7] |
WU K L, CHEN Z X, LI J, et al. Wettability effect on nanoconfined water flow[J]. Proceedings of the National Academy of Sciences, 2017, 114(13): 3358-3363.
|
[8] |
HU H Y, HAO F, GUO X S, et al. Effect of lithofacies on the pore system of over-mature Longmaxi shale in the Jiaoshiba area, Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 109: 886-898.
|
[9] |
KLAVER J, DESBOIS G, LITTKE R, et al. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales[J]. Marine and Petroleum Geology, 2015, 59: 451-466.
|
[10] |
苏玉亮, 王瀚, 詹世远, 等. 页岩油微尺度流动表征及模拟研究进展[J]. 深圳大学学报(理工版), 2021, 38(6): 579-589.
|
|
[SU Y L, WANG H, ZHAN S Y, et al. Research progress on characterization and simulation of shale oil flow in microscale[J]. Journal of Shenzhen University Science & Engineering. 2021, 38(6): 579-589.]
|
[11] |
SECCHI E, MARBACH S, NIGUES A, et al. Massive radius-dependent flow slippage in carbon nanotubes[J]. Nature, 2016, 537(7619): 210-213.
|
[12] |
王鸣川, 王燃, 岳慧, 等. 页岩油微观渗流机理研究进展[J]. 石油实验地质, 2024, 46(1): 98-110.
|
|
[WANG M C, WANG R, YUE H, et al. Research progress of microscopic percolation mechanism of shale oil[J]. Petroleum Geology & Experiment, 2024, 46(1): 98-110.]
|
[13] |
QIN X J, WANG H, XIA Y X, et al. Micro-and nanoscale flow mechanisms in porous rocks based on pore-scale modeling[J]. Capillarity, 2024, 13(1): 24-28.
|
[14] |
ZHANG Q, SU Y L, WANG W D, et al. Apparent permeability for liquid transport in nanopores of shale reservoirs: Coupling flow enhancement and near wall flow[J]. International Journal of Heat and Mass Transfer, 2017, 115: 224-234.
|
[15] |
JAVADPOUR F, SINGH H, RABBANI A, et al. Gas flow models of shale: a review[J]. Energy & Fuels, 2021, 35(4): 2999-3010.
|
[16] |
LI J, LI X F, WU K L, et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay[J]. International Journal of Coal Geology, 2017, 179: 253-268.
|
[17] |
ZHANG M S, HUANG J S, WANG H, et al. Wetting behaviors of water on kerogen surfaces from molecular level: Implication for gas extraction and hydrogen storage in shale[J]. Capillarity, 2025, 14(3): 72-81.
|
[18] |
王瀚, 苏玉亮, 王文东, 等. 基于格子Boltzmann方法的页岩纳米多孔介质流体流动模拟[J]. 石油学报, 2023, 44(3): 534-544.
doi: 10.7623/syxb202303011
|
|
[WANG H, SU Y L, WANG W D, et al. Simulation on liquid flow in shale nanoporous media based on lattice Boltzmann method[J]. Acta Petrolei Sinica, 2023, 44(3): 534-544.]
doi: 10.7623/syxb202303011
|
[19] |
WANG S, JAVADPOUR F, FENG Q H. Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J]. Fuel, 2016, 171: 74-86.
|
[20] |
WANG S, JAVADPOUR F, FENG Q H. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J]. Fuel, 2016, 181: 741-758.
|
[21] |
AL HINAI A, REZAEE R, ESTEBAN L, et al. Comparisons of pore size distribution: a case from the Western Australian gas shale formations[J]. Journal of Unconventional Oil and Gas Resources, 2014, 8: 1-13.
|
[22] |
SHENG G L, JAVADPOUR F, SU Y L. Dynamic porosity and apparent permeability in porous organic matter of shale gas reservoirs[J]. Fuel, 2019, 251: 341-351.
|
[23] |
WANG H, SU Y L, WANG W D, et al. Enhanced water flow and apparent viscosity model considering wettability and shape effects[J]. Fuel, 2019, 253: 1351-1360.
|
[24] |
WU K L, CHEN Z X, LI J, et al. Nanoconfinement effect on n-alkane flow[J]. Journal of Physical Chemistry C, 2019, 123(26): 16456-16461.
doi: 10.1021/acs.jpcc.9b03903
|
[25] |
KANNAM S K, TODD B D, HANSEN J S, et al. How fast does water flow in carbon nanotubes?[J]. The Journal of chemical physics, 2013, 138(9): 094701.
|
[26] |
ZHAO J L, KANG Q J, WANG Y P, et al. Viscous dissipation and apparent permeability of gas flow in nanoporous media[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018667.
|
[27] |
WANG H, SU Y L, QIAO R, et al. Investigate effects of microstructures on nanoconfined water flow behaviors from viscous dissipation perspectives[J]. Transport in Porous Media, 2021, 140(3): 815-836.
|
[28] |
李栋, 郑双金, 任春梅, 等. 页岩油多孔介质孔隙尺度运移残留规律分析[J]. 东北石油大学学报, 2022, 46(4): 98-104.
|
|
[LI D, ZHENG S J, REN C M, et al. Residual law analysis of pore scale transport in porous media of shale oil[J]. Journal of Northeast Petroleum University, 2022, 46(4): 98-104.]
|
[29] |
ZHOU J, ZHANG J J, YANG J P, et al. Mechanisms for kerogen wettability transition from water-wet to CO2-wet: Implications for CO2 sequestration[J]. Chemical Engineering Journal, 2022, 428: 132020.
|
[30] |
XU J L, WANG R T, ZAN L. Shale oil occurrence and slit medium coupling based on a molecular dynamics simulation[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111151.
|
[31] |
LIU S Y, A H B, TANG S W, et al. Molecular insights into structural and dynamic properties of water molecules in calcium silicate hydrate nanopores: The roles of pore size and temperature[J]. Capillarity, 2023, 8(2): 23-33.
|
[32] |
杨雨萱, 王森, 陈李杨, 等. 页岩油压闷采渗流机理的格子Boltzmann模拟[J]. 石油科学通报, 2025, 10(2): 298-308.
|
|
[YANG Y X, WANG S, CHEN L Y, et al. Shale oil flow mechanisms during fracturing-soaking-producing process studied by Lattice Boltzmann simulation[J]. Petroleum Science Bulletin, 2025, 10(2): 298-308.]
|
[33] |
赵玉龙, 刘香禺, 张烈辉, 等. 基于格子Boltzmann方法的非常规天然气微尺度流动基础模型[J]. 石油勘探与开发, 2021, 48(1): 156-165.
doi: 10.11698/PED.2021.01.14
|
|
[ZHAO Y L, LIU X Y, ZHANG L H, et al. A basic model of unconventional gas microscale flow based on the lattice Boltzmann method[J]. Petroleum Exploration and Development, 2021, 48(1): 156-165.]
|
[34] |
LIU P Y, ZHAO J L, LI Z, et al. Numerical simulation of multiphase multi-physics flow in underground reservoirs: Frontiers and challenges[J]. Capillarity, 2024, 12(3): 72-79.
|
[35] |
ZHAO J L, KANG Q, YAO J, et al. The effect of wettability heterogeneity on relative permeability of two-phase flow in porous media: A lattice Boltzmann study[J]. Water Resources Research, 2018, 54(2): 1295-1311.
|
[36] |
JU Y, GONG W B, CHANG W, et al. Effects of pore characteristics on water-oil two-phase displacement in non-homogeneous pore structures: A pore-scale lattice Boltzmann model considering various fluid density ratios[J]. International Journal of Engineering Science, 2020, 154: 103343.
|
[37] |
ZHENG J T, YANG J, WANG M R. Pore-scale modeling of spontaneous imbibition behavior in a complex shale porous structure by pseudopotential lattice Boltzmann method[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 9586-9600.
|
[38] |
WANG H, WANG W D, SU Y L, et al. Lattice Boltzmann model for oil/water two-phase flow in nanoporous media considering heterogeneous viscosity, liquid/solid, and liquid/liquid slip[J]. SPE Journal, 2022, 27(06): 3508-3524.
|
[39] |
WANG W D, XIE Q H, WANG H, et al. Pseudopotential-based multiple-relaxation-time lattice Boltzmann model for multicomponent and multiphase slip flow[J]. Advances in Geo-Energy Research, 2023, 9(2): 106-116.
|
[40] |
LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review E, 2000, 61(6): 6546.
|
[41] |
LI Q, LUO K H, LI X J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model[J]. Physical Review E, 2013, 87(5): 053301.
|
[42] |
YANG Y, SHAN M L, KAN X F, et al. Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM[J]. Ultrasonics Sonochemistry, 2020, 62: 104873.
|
[43] |
YIOTIS A G, PSIHOGIOS J, KAINOURGIAKIS M E, et al. A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300(1-2): 35-49.
|