| [1] |
孙龙德, 邹才能, 朱如凯, 等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 2013, 40(6): 641-649.
|
|
[SUN L D, ZOU C N, ZHU R K, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649.]
|
| [2] |
曾联波, 宋逸辰, 韩俊, 等. 塔里木盆地构造流体作用对超深层断控碳酸盐岩缝洞型储层的控制[J]. 石油勘探与开发, 2025, 52(1): 128-139.
doi: 10.11698/PED.20240219
|
|
[ZENG L B, SONG Y C, HAN J, et al. Control of structure and fluid on ultra-deep fault-controlled carbonate fracture-cavity reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2025, 52(1): 128-139.]
|
| [3] |
常少英, 李世银, 王孟修, 等. 超深断控型油气藏差异富集程度分析方法及应用——以塔里木盆地富满油田为例[J]. 石油科学通报, 2024, 9(6): 899-910.
|
|
[CHANG S Y, LI S Y, WANG M X, et al. Analysis method and application of differential enrichment of ultra-deepfault-controlled reservoirs: A case study of the Fuman Oilfield in the Tarim Basin[J]. Petroleum Science Bulletin, 2024, 9(6): 899-910.]
|
| [4] |
邓尚, 刘雨晴, 刘军, 等. 克拉通盆地内部走滑断层发育、演化特征及其石油地质意义:以塔里木盆地顺北地区为例[J]. 大地构造与成矿学, 2021, 45(6): 1111-1126.
|
|
[DENG S, LIU Y Q, LIU J, et al. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal: A case study of the Shunbei Area, Tarim Basin[J]. Geotectonica et Metallogenia, 2021, 45(6): 1111-1126.]
|
| [5] |
陈石, 梁鑫鑫, 张银涛, 等. 塔里木盆地富满油田古生界走滑断裂发育特征及控圈模式[J]. 石油科学通报, 2025, 10(1): 1-15.
|
|
[CHEN S, LIANG X X, ZHANG Y T, et al. Development characteristics of Paleozoic strike-slip fault and its control on traps in Fuman Oilfiled, Tarim Basin[J]. Petroleum Science Bulletin, 2025, 10(1): 1-15.]
|
| [6] |
姚军, 黄朝琴, 孙海, 等. 油气渗流力学多尺度研究方法进展[J]. 石油科学通报, 2023, 8(1): 32-68.
|
|
[YAO J, HUANG Z Q, SUN H, et al. Research progress of multi-scale methods for oil and gas flow in porous media[J]. Petroleum Science Bulletin, 2023, 8(1): 32-68.]
|
| [7] |
陈欢庆, 王珏, 杜宜静. 储层非均质性研究方法进展[J]. 高校地质学报, 2017, 23(1): 104-116.
|
|
[CHEN H Q, WANG J, DU Y J. Advances of research methods on reservoir heterogeneity[J]. Geological Journal of China Universities, 2017, 23(1): 104-116.]
|
| [8] |
陈利新, 王胜雷, 姜振学, 等. 哈拉哈塘油田塔河北区块奥陶系断裂发育特征及断控区储层类型与分布预测[J]. 石油科学通报, 2024, 9(3): 408-421.
|
|
[CHEN L X, WANG S L, JIANG Z X, et al. Fault characteristics, reservoir types and distribution prediction in a fault-controlled area in the Ordovician strata of the Tahebei Block, Halahatang Oilfield[J]. Petroleum Science Bulletin, 2024, 9(3): 408-421.]
|
| [9] |
靳秀菊, 侯加根, 刘红磊, 等. 礁滩相储集层平面非均质性定量表征技术[J]. 地质论评, 2016, 62(5): 1315-1328.
|
|
[JIN X J, HOU J G, LIU H L, et al. Quantitative characterization of plane heterogeneity of reef bank reservoir[J]. Geological Review, 2016, 62(5): 1315-1328.]
|
| [10] |
GONG L, LIU K Q, JU W. Advances in the study of natural fractures in deep and unconventional reservoirs[J]. Frontiers in Earth Science, 2023, 10: 1096643.
doi: 10.3389/feart.2022.1096643
URL
|
| [11] |
尚墨翰, 赵向原, 曾大乾, 等. 深层海相碳酸盐岩储层非均质性研究进展[J]. 油气地质与采收率, 2021, 28(5): 32-49.
|
|
[SHANG M H, ZHAO X Y, ZENG D Q, et al. Research progress on heterogeneity of deep marine carbonate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5): 32-49.]
|
| [12] |
郑孟林, 王毅, 金之钧, 等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 2014, 35(6): 925-934.
|
|
[ZHENG M L, WANG Y, JIN Z J, et al. Superimposition, evolution and petroleum accumulation of Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 925-934.]
|
| [13] |
韩杰, 吴萧, 潘文庆, 等. 塔里木盆地西北缘巴楚—乌什露头区奥陶系沉积相特征[J]. 沉积学报, 2015, 33(4): 764-772.
|
|
[HAN J, WU X, PAN W Q, et al. Ordovician sedimentary facies characteristic in Bachu-Wushi outcrop area of northwest Tarim Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 764-772.]
|
| [14] |
王清龙, 韩剑发, 李浩, 等. 塔里木盆地西北缘露头区中—下奥陶统碳酸盐岩层序结构、沉积演化及海平面变化[J]. 石油与天然气地质, 2019, 40(4): 835-850.
|
|
[WANG Q L, HAN J F, LI H, et al. Carbonate sequence architecture, sedimentary evolution and sea level fluctuation of the Middle and Lower Ordovician on outcrops at the northwestern margin of Tarim Basin[J]. Oil & Gas Geology, 2019, 40(4): 835-850.]
|
| [15] |
马永生, 蔡勋育, 黎茂稳, 等. 深层—超深层海相碳酸盐岩成储成藏机理与油气藏开发方法研究进展[J]. 石油勘探与开发, 2024, 51(4): 692-707.
doi: 10.11698/PED.20240072
|
|
[MA Y S, CAI X Y, LI M W, et al. Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates[J]. Petroleum Exploration and Development, 2024, 51(4): 692-707.]
|
| [16] |
马龙杰, 胡文革, 何新明, 等. 顺北油气田二区断控缝洞结构凝析气藏重力分异特征——以4号断裂带为例[J]. 油气地质与采收率, 2025, 32(1): 1-16.
|
|
[MA L J, HU W G, HE X M, et al. Gravitational differentiation characteristics of condensate gas reservoir with fault-controlled fracture-cavity structure in second block of Shunbei Oil and Gas Field: A case study of No.4 fault zone[J]. Petroleum Geology and Recovery Efficiency, 2025, 32(1): 1-16.]
|
| [17] |
韩剑发, 孙冲, 朱光有, 等. 超深断控碳酸盐岩油藏空间结构表征技术与工程实践[J]. 中国工程科学, 2024, 26(2): 255-268.
doi: 10.15302/J-SSCAE-2024.07.006
|
|
[HAN J F, SUN C, ZHU G Y, et al. Spatial structure characterization technology and engineering practice of ultra-deep fault-controlled carbonate reservoir[J]. Strategic Study of Chinese Academy of Engineering, 2024, 26(2): 255-268.]
|
| [18] |
YAO Y T, ZENG L B, MAO Z, et al. Differential deformation of a strike-slip fault in the Paleozoic carbonate reservoirs of the Tarim Basin, China[J]. Journal of Structural Geology, 2023, 173: 104908.
doi: 10.1016/j.jsg.2023.104908
URL
|
| [19] |
曾联波, 巩磊, 宿晓岑, 等. 深层—超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14.
|
|
[ZENG L B, GONG L, SU X C, et al. Natural fractures in deep to ultra-deep tight reservoirs: Distribution and development[J]. Oil & Gas Geology, 2024, 45(1): 1-14.]
|
| [20] |
杨德彬, 杨敏, 李新华, 等. 塔河油田碳酸盐岩小缝洞型储层特征及成因演化[J]. 油气地质与采收率, 2020, 27(6): 41-46.
|
|
[YANG D B, YANG M, LI X H, et al. Characteristics and genetic evolution of small-scale fracture cave carbonate reservoirs in Tahe Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 41-46.]
|
| [21] |
高济元, 张恒, 蔡忠贤, 等. 碳酸盐岩缝洞型油藏古岩溶洞穴充填作用研究进展——以塔河油田为例[J]. 石油科学通报, 2025, 10(2): 326-341.
|
|
[GAO J Y, ZHANG H, CAI Z X, et al. Research process on the filling effect of paleokarst caves in carbonate fracture-cave reservoirs: A case study of Tahe Oilfield[J]. Petroleum Science Bulletin, 2025, 10(2): 326-341.]
|
| [22] |
ZENG L B, SONG Y C, LIU G P, et al. Natural fractures in ultra-deep reservoirs of China: A review[J]. Journal of Structural Geology, 2023, 175: 104954.
doi: 10.1016/j.jsg.2023.104954
URL
|
| [23] |
HENDERSON I H, GANERØD G V, BRAATHEN A. The relationship between particle characteristics and frictional strength in basal fault breccias: Implications for fault-rock evolution and rockslide susceptibility[J]. Tectonophysics, 2010, 486(1-4): 132-149.
doi: 10.1016/j.tecto.2010.02.002
URL
|
| [24] |
江同文, 邓兴梁, 曹鹏, 等. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552.
|
|
[JIANG T W, DENG X L, CAO P, et al. Storage space types and water-flooding efficiency for fault-controlled fractured oil reservoirs in Fuman Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2024, 45(2): 542-552.]
|
| [25] |
邹瑞, 王璐, 罗瑞兰, 等. 深层碳酸盐岩气藏不同类型储层全尺寸孔径分布及其分形特征——以四川盆地高磨地区震旦系灯四段为例[J]. 中国矿业大学学报, 2024, 53(6): 1218-1236.
|
|
[ZOU R, WANG L, LUO R L, et al. Full-range pore throat radius distribution and fractal characteristics of different types of reservoirs in deep carbonate gas reservoirs: A case study of Deng-4 Member in Gaoshiti-Moxi Area, Sichuan Basin[J]. Journal of China University of Mining & Technology, 2024, 53(6): 1218-1236.]
|
| [26] |
ZENG L B. Microfracturing in the Upper Triassic Sichuan Basin tight-gas sandstones: Tectonic, overpressure, and diagenetic origins[J]. AAPG Bulletin, 2010, 94(12): 1811-1825.
doi: 10.1306/06301009191
URL
|
| [27] |
SONG Y C, GONG F, ZENG L B, et al. The influence of stress on the fracture and elastic properties of carbonate rocks controlled by strike-slip faults: A novel rock-physics modelling perspective[J]. Geophysical Journal International, 2024, 238(3): 1165-1180.
doi: 10.1093/gji/ggae210
URL
|
| [28] |
GONG F, SONG Y C, ZENG L B, et al. The heterogeneity of petrophysical and elastic properties in carbonate rocks controlled by strike-slip fault: A case study from Yangjikan Outcrop in the Tarim Basin[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111170.
doi: 10.1016/j.petrol.2022.111170
URL
|
| [29] |
SANDERSON D J, NIXON C W. Topology, connectivity and percolation in fracture networks[J]. Journal of Structural Geology, 2018, 115: 167-177.
doi: 10.1016/j.jsg.2018.07.011
URL
|
| [30] |
NOORUDDIN H A, HOSSAIN M E, AL-YOUSEF H, et al. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples[J]. Journal of Petroleum Science and Engineering, 2014, 121: 9-22.
doi: 10.1016/j.petrol.2014.06.032
URL
|
| [31] |
程媛, 张冲, 陈雨龙, 等. 基于压汞资料的碳酸盐岩储层渗透率预测模型——以扎纳若尔油田KT-Ⅰ和KT-Ⅱ含油层系灰岩储层为例[J]. 油气地质与采收率, 2017, 24(3): 10-17.
|
|
[CHENG Y, ZHANG C, CHEN Y L, et al. Permeability prediction model of carbonate reservoir based on mercury injection data: A case study of oil-bearing limestone reservoir in KT-I and KT-II Members of Zahnanor Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(3): 10-17.]
|
| [32] |
王继成, 姜春艳, 代云娇, 等. 珠江口盆地陆丰A油田低渗砂岩油藏储层分类评价[J]. 非常规油气, 2019, 6(3): 6-14.
|
|
[WANG J C, JIANG C Y, DAI Y J, et al. The classification and evaluation of low permeability reservoir in Lufeng A oilfield, Pearl River Mouth Basin[J]. Unconventonal Oil & Gas, 2019, 6(3): 6-14.]
|
| [33] |
李海英, 刘军, 龚伟, 等. 基于数字岩石物理的深层缝洞型碳酸盐岩储层地震弹性特征表征[J]. 地球物理学进展, 2024, 39(2): 716-726.
|
|
[LI H Y, LIU J, GONG W, et al. Characterizing seismic elastic properties of deep cavity-fracture carbonate reservoir using digital rock physics[J]. Progress in Geophysics, 2024, 39(2): 716-726.]
|
| [34] |
YAGIZ S. Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer[J]. Bulletin of Engineering Geology and the Environment, 2009, 68: 55-63.
doi: 10.1007/s10064-008-0172-z
URL
|
| [35] |
袁红旗, 邓馨雨, 杜会尧, 等. 柳江盆地二叠系山西组露头致密砂岩储层非均质性表征方法[J]. 石油与天然气地质, 2023, 44(2): 468-479.
|
|
[YUAN H Q, DENG X Y, DU H Y, et al. Characterizing the heterogeneity of tight sandstone in outcropped Permian Shanxi Formation, Liujiang Basin[J]. Oil & Gas Geology, 2023, 44(2): 468-479.]
|
| [36] |
周志杰, 张小莉, 杨振, 等. 基于优化熵权的储层非均质性定量表征新方法研究———以鄂尔多斯盆地志丹油区F井区长611储层为例[J]. 地球物理学进展, 2023, 38(4): 1713-1721.
|
|
[ZHOU Z J, ZHANG X L, YANG Z, et al. Study on a new method for quantitative characterization of reservoir heterogeneity based on optimized entropy weight: An example of the Chang 611 reservoir in the F well area of Zhidan Oilfield in Ordos Basin[J]. Progress in Geophysics, 2023, 38(4): 1713-1721.]
|
| [37] |
马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425.
doi: 10.7623/syxb201912001
|
|
[MA Y S, HE Z L, ZHAO P R, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425.]
doi: 10.7623/syxb201912001
|
| [38] |
YU J X, SHI K B, WANG Q Q, et al. Structural diagenesis of deep carbonate rocks controlled by intra-cratonic strike-slip faulting: An example in the Shunbei Area of the Tarim Basin, NW China[J]. Basin Research, 2022, 34(5): 1601-1631.
doi: 10.1111/bre.v34.5
URL
|