| [1] |
邹才能, 陶士振, 杨智, 等. 中国非常规油气勘探与研究新进展[J]. 矿物岩石地球化学通报, 2012, 31(4): 312-322.
|
|
[ZOU C N, TAO S Z, YANG Z, et al. New advance in unconventional petroleum exploration and research in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(4): 312-322.]
|
| [2] |
贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350.
doi: 10.7623/syxb201203001
|
|
[JIA C Z, [ZOU C N, [LI J Z, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350.]
doi: 10.7623/syxb201203001
|
| [3] |
许长福, 刘红现, 钱根宝, 等. 克拉玛依砾岩储集层微观水驱油机理[J]. 石油勘探与开发, 2011, 38(6): 725-732.
|
|
[XU C F, LIU H X, QIAN G B, et al. Microcosmic mechanisms of water-oil displacement in conglomerate reservoirs in Karamay Oilfield, NW China[J]. Petroleum Exploration and Development, 2011, 38(6): 725-732.]
doi: 10.1016/S1876-3804(12)60006-8
URL
|
| [4] |
匡立春, 唐勇, 雷德文, 等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组扇控大面积岩性油藏勘探实践[J]. 中国石油勘探, 2014, 19(6): 14-23.
|
|
[KUANG L C, TANG Y, LEI D, et al. Exploration of fan-controlled large-area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu Depression in Junggar Basin[J]. China Petroleum Exploration, 2014, 19(6): 14-23.]
|
| [5] |
董鑫旭, 孟祥振, 蒲仁海. 基于致密砂岩储层孔喉系统分形理论划分的可动流体赋存特征认识[J]. 天然气工业, 2023, 43(3): 78-90.
|
|
[DONG X X, MENG X Z, PU R H, et al. Occurrence characteristics of movable fluids based on the division of pore throat system in tight gas reservoir by fractal theory[J]. Natural Gas Industry, 2023, 43(3): 78-90.]
|
| [6] |
邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6): 979-1007.
|
|
[ZOU C N, YANG Z, ZHU R K, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979-1007.]
|
| [7] |
徐蕾, 师永民, 徐常胜, 等. 长石族矿物对致密油储渗条件的影响——以鄂尔多斯盆地长6油层组为例[J]. 石油勘探与开发, 2013, 40(4): 484-454.
|
|
[XU L, SHI Y M, XU C S, et al. Influences of feldspars on the storage and permeability conditions in tight oil reservoirs: A case study of Chang-6 oil layer group, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(4): 484-454.]
|
| [8] |
杨正明, 马壮志, 肖前华, 等. 致密油藏岩芯全尺度孔喉测试方法及应用[J]. 西南石油大学学报(自然科学版), 2018, 40(3): 97-104.
|
|
[YANG Z M, MA Z Z, XIAO Q H, et al. Method for all-scale pore-throat measurements in tight reservoir cores and its application[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2018, 40(3): 97-104.]
|
| [9] |
公言杰, 柳少波, 朱如凯, 等. 致密油流动孔隙度下限——高压压汞技术在松辽盆地南部白垩系泉四段的应用[J]. 石油勘探与开发, 2015, 42(5): 681-688.
|
|
[GONG Y J, LIU S B, ZHU R K, et al. Lower bound of flow porosity for tight oil: Application of high-pressure mercury injection technology in the Quan IV formation of the cretaceous system, southern Songliao Basin[J]. Petroleum Exploration and Development, 2015, 42(5): 681-688.]
|
| [10] |
白斌, 朱如凯, 吴松涛, 等. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40(3): 329-333.
|
|
[BAI B, [ZHU R K, [WU S T, et al. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(3): 329-333.]
|
| [11] |
邹才能, 朱如凯, 白斌, 等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 2015, 34(1): 3-17+1-2.
|
|
[ZOU C N, ZHU R K, BAI B, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 3-17+1-2.]
|
| [12] |
斯春松. 准噶尔盆地西北缘中二叠统-下三叠统扇三角洲砂砾岩储层孔隙结构表征及成因机制[D]. 武汉: 中国地质大学(武汉), 2014.
|
|
[SI C S. Formation mechanism and pore structure characterization of Middle Permian to Lower Triassic Fan-delta Sandy conglomerate reservoirs in NW Margin of the Junggar Basin[D]. Wuhan: China University of Geosciences(Wuhan), 2014.]
|
| [13] |
陈波, 尤新才, 张银, 等. 玛南地区乌尔禾组成岩作用对储层物性的影响[J]. 西南石油大学学报(自然科学版), 2016, 38(1): 10-20.
|
|
[CHEN B, YOU X C, ZHANG Y, et al. Effects of diagenesis and reservoir of the Urho Formation in Manan Region[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2016, 38(1): 10-20.]
|
| [14] |
YANG Y B, XIAO W L, ZHENG L L, et al. Pore throat structure heterogeneity and its effect on gas-phase seepage capacity in tight sandstone reservoirs:A case study from the Triassic Yanchang Formation, Ordos Basin[J/OL]. Petroleum Science, 2023, 20(5): 2892-2907.
|
| [15] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
doi: 10.1306/08171111061
URL
|
| [16] |
LV W, CHEN S, GAO Y, et al. Evaluating seepage radius of tight oil reservoir using digital core modeling approach[J]. Journal of Petroleum Science and Engineering, 2019, 178: 609-615.
doi: 10.1016/j.petrol.2019.03.072
URL
|
| [17] |
WU J, YANG S, GAN B, et al. Pore structure and movable fluid characteristics of typical sedimentary lithofacies in a tight conglomerate reservoir, Mahu Depression, Northwest China[J]. ACS Omega, 2021, 6(36): 23243-23261.
doi: 10.1021/acsomega.1c02952
pmid: 34549125
|
| [18] |
赵静. 致密砂砾岩有效储层主控因素——以松辽盆地南部A断陷为例[J]. 断块油气田, 2017, 24(2): 165-168.
|
|
[ZHAO J. Main controlling factors of tight sandy conglomerate effective reservoir: A case study of A Fault Depression in southern Songliao Basin[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 165-168.]
|
| [19] |
谷美维. 致密砂砾岩储层微观结构表征及分级评价[D]. 青岛: 中国石油大学(华东), 2017.
|
|
[GU M W. Microstructural characterization and grading evaluation of tight sand-conglomerate reservoir[D]. Qingdao: China University of Petroleum (East China), 2017.]
|
| [20] |
SHENG J. Enhanced oil recovery in shale reservoirs by gas injection[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 252-259.
doi: 10.1016/j.jngse.2014.12.002
URL
|
| [21] |
CHALMERS G R L, BUSTIN R M. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity[J]. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 1-21.
doi: 10.2113/gscpgbull.56.1.1
URL
|
| [22] |
高阳, 王永诗, 李孝军, 等. 基于岩石孔喉结构的致密砂岩分类方法——以济阳坳陷古近系为例[J]. 油气地质与采收率, 2019, 26(2): 32-41.
|
|
[GAO Y, WANG Y S, LI X J, et al. Classification method for tight sandstones based on rock pore-throat structure: A case study of the Paleogene in the Jiyang Depression[J]. Petroleum Geology and recovery efficiency, 2019, 26(2): 32-41.]
|
| [23] |
郭秀娟, 夏东领, 庞雯, 等. 致密油微观孔隙结构精细表征对储层分类的重要作用——以红河油田长8油层为例[J]. 科学技术与工程, 2019, 19(34): 129-136.
|
|
[GUO X J, XIA D L, PANG W, et al. Significance of microscope pore structure characterization for classification of tight reservoir: Taking the 8th member of Yanchang Formation in HongHe Oilfield as an example[J]. Science and Technology Engineering, 2019, 19(34): 129-136.]
|
| [24] |
ZHANG Q, LIU Y, WANG B, et al. Effects of pore-throat structures on the fluid mobility in Chang 7 tight sandstone reservoirs of Longdong Area, Ordos Basin[J]. Marine and Petroleum Geology, 2022, 135: 105407.
doi: 10.1016/j.marpetgeo.2021.105407
URL
|
| [25] |
王亚, 葛丽珍, 路研, 等. 基于核磁共振驱替实验的低渗透砂岩流体可动性及剩余油赋存特征研究[J]. 油气地质与采收率, 2023, 30(6): 22-31.
|
|
[WANG Y, GE L Z, LU Y, et al. Study on fluid mobility and occurrence characteristics of remaining oil in low-permeability sandstone reservoirs based on nuclear magnetic resonance displacement experiments[J]. Petroleum Geology and recovery efficiency, 2023, 30(6): 22-31.]
|
| [26] |
付爽, 庞雷, 许学龙, 等. 准噶尔盆地玛湖凹陷下乌尔禾组储层特征及其控制因素[J]. 天然气地球科学, 2019, 30(4): 468-477.
doi: 10.11764/j.issn.1672-1926.2019.01.015
|
|
[FU S, PANG L, XU X L, et al. The characteristics and their controlling factors on reservoir in Permian Lower Urho Formation in Mahu Sag, Junggar Basin[J]. Natural Gas Geoscience, 2019, 30(4): 468-477.]
|
| [27] |
冯强汉, 王冰, 杨勃, 等. 致密砂岩气藏储层微观孔隙结构特征及其对产能的影响——以鄂尔多斯盆地苏里格西部苏48区盒8、山1段为例[J]. 科学技术与工程, 2020, 20(4): 1360-1366.
|
|
[FENG Q H, WANG B, YANG BO, et al. Microscopic pore structure characteristics of tight sandstone gas reservoir and its influence on productivity: A case of Box 8 and Shan 1 in Su 8 western Sulige Basin[J]. Science and Technology Engineering, 2020, 20(4): 1360-1366.]
|
| [28] |
吴松涛, 朱如凯, 李勋, 等. 致密储层孔隙结构表征技术有效性评价与应用[J]. 地学前缘, 2018, 25(2): 191-203.
doi: 10.13745/j.esf.yx.2017-6-2
|
|
[WU S T, ZHU R K, LI X, et al. Evaluation and application of pore structure characterization technologies in unconventional tight reservoirs[J]. Earth Science Frontiers, 2018, 25(2): 191-203.]
|
| [29] |
庞振宇, 李艳, 赵习森, 等. 特低渗储层可动流体饱和度研究——以甘谷驿油田长6储层为例[J]. 地球物理学进展, 2017, 32(2): 702-708.
|
|
[PANG Z Y, LI Y, ZHAO X S, et al. Study on movable fluid saturation in ultra low permeability reservoir: Taking Chang 6 reservoir in Ganguyi oil field as an example[J]. Progress in Geophysics, 2017, 32(2): 702-708.]
|
| [30] |
司马立强, 王超, 王亮, 等. 致密砂岩储层孔隙结构对渗流特征的影响——以四川盆地川西地区上侏罗统蓬莱镇组储层为例[J]. 天然气工业, 2016, 36(12): 18-25.
|
|
[SIMA L Q, WANG C, WANG L, et al. Effect of pore structure on the seepage characteristics of tight sandstone reservoirs: A case study of Upper Jurassic Penglaizhen Fm reservoirs in the western Sichuan Basin[J]. Natural Gas Industry, 2016, 36(12): 18-25.]
|
| [31] |
黎盼, 孙卫, 高永利, 等. 鄂尔多斯盆地马岭油田长81储层不同成岩相类型可动流体赋存特征分析[J]. 地质与勘探, 2019, 55(2): 649-660.
|
|
[LI P, SUN W, GAO Y L, et al. Occurrence characteristics of movable fluids in different diagenetic facies of the Chang 81 reservoir, Maling oilfield, Ordos Basin[J]. Geology and Exploration, 2019, 55(2): 649-660.]
|
| [32] |
李晶晶, 孙国翔, 刘琦, 等. 吉木萨尔凹陷芦一段页岩储集层孔隙结构及敏感性[J]. 新疆石油地质, 2021, 42(5): 541-547.
|
|
[LI J J, SUN G X, LIU Q, et al. Pore structure and sensitivity of the shale reservoir in the Lu1 Member of Jimsar Sag[J]. Xinjiang Petroleum Geology, 2021, 42(5): 541-547.]
|
| [33] |
Bishop S R. The experimental investigation of formation damage due to the induced flocculation of clays within a sandstone pore structure by a high salinity brine[C]// SPE European Formation Damage Conference and Exhibition. SPE, 1997: SPE-38156-MS.
|
| [34] |
张小青, 伊海生, 危国亮, 等. 应用荧光显微技术判别吐哈盆地储层含油水性[J]. 地球科学与环境学报, 2005, (2): 56-59.
|
|
[ZHANG X Q, YI H S, WEI G L, et al. Application of fluorescence microscopy to determine oil-water content in reservoirs of the Tuha Basin[J]. Journal of Earth Sciences and Environment, 2005, (2): 56-59.]
|
| [35] |
金国文, 王堂宇, 刘忠华, 等. 基于核磁共振测井的砂砾岩储层分类与产能预测方法[J]. 石油学报, 2022, 43(5): 648-657.
doi: 10.7623/syxb202205006
|
|
[JIN G W, WANG T Y, LIU Z H, et al. Classification and productivity prediction of glutenite reservoirs based on NMR logging[J]. Acta Petrolei Sinica, 2022, 43(5): 648-657.]
doi: 10.7623/syxb202205006
|
| [36] |
孙颖. 核磁共振在页岩储层参数评价中的应用综述[J]. 地球物理学进展, 2023, 38(1): 254-270.
|
|
[SUN Y. Review of the application of nuclear magnetic resonance in the evaluation of shale reservoir parameters[J]. Advances in Geophysics, 2023, 38(1): 254-270.]
|
| [37] |
肖立志. 我国核磁共振测井应用中的若干重要问题[J]. 测井技术, 2007, 31(5): 401-407.
|
|
[XIAO L Z. Some important issues for NMR logging applications in China[J]. Well Logging Technology, 2007, 31(5): 401-407.]
|
| [38] |
赵建斌, 万金彬, 罗安银, 等. 储层品质评价中的核磁共振研究[J]. 西南石油大学学报(自然科学版), 2018, 40(1): 89-96.
|
|
[ZHAO J B, WAN J B, LUO A Y, et al. A study on nuclear magnetic resonance to reservoir quality evaluation[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2018, 40(1): 89-96.]
|
| [39] |
谢然红, 肖立志, 邓克俊, 等. 二维核磁共振测井[J]. 测井技术, 2005, (5): 43-47+89.
|
|
[XIE L H, XIAO L Z, DENG K J, et al. Two-dimensional NMR logging[J]. Well Logging Technology, 2005, (5): 43-47+89.]
|
| [40] |
崔海标, 陆凡, 李鑫, 等. D-T2二维核磁共振测井技术发展现状综述[J]. 石油化工应用, 2016, 35(3): 1-5.
|
|
[CUI H B, LU F, LI X, et al. Review on the development of D-T2 two-dimensional nuclear magnetic resonance logging[J]. Petrochemical Industry Application, 2016, 35(3): 1-5.]
|
| [41] |
王志战. 页岩油储层D-T2核磁共振解释方法[J]. 天然气地球科学, 2020, 31(8): 1178-1184.
doi: 10.11764/j.issn.1672-1926.2020.03.009
|
|
[WANG Z Z. Discuss on D-T2 NMR interpretation of oil shale[J]. Natural Gas Geoscience, 2020, 31(8): 1178-1184.]
|
| [42] |
韩闯, 李纲, 别康, 等. 二维核磁共振T1-T2谱在风西复杂碳酸盐岩储层流体识别中的应用[J]. 测井技术, 2021, 45(1): 56-61.
|
|
[HAN C, LI G, BIE K, et al. Application of innovative T1-T2 fluid typing method in complex carbonate reservoir of Fengxi Block[J]. Well Logging Technology, 2021, 45(1): 56-61.]
|
| [43] |
刘林, 刘向君, 桑琴, 等. 川西中坝致密砂岩气储层微观孔隙结构特征及分类评价[J]. 特种油气藏, 2024, 31(5): 31-40.
doi: 10.3969/j.issn.1006-6535.2024.05.004
|
|
[LIU L, LIU X J, SANG Q, et al. Microscopic pore structure characteristics and classification evaluation of tight sandstone gas reservoirs in the Zhongba Area of western Sichuan[J]. Special Oil and Gas Reservoirs, 2024, 31(5): 31-40.]
|
| [44] |
宋兆杰, 邓森, 宋宜磊, 等. 大庆油田古龙页岩油-CO2高压相态及传质规律[J]. 石油学报, 2024, 45(2): 390-402.
doi: 10.7623/syxb202402005
|
|
[SONG Z J, DENG S, SONG Y L, et al. High-pressure phase behavior and mass transfer law of Gulong shale oil and CO2 in Daqing oilfield[J]. Acta Petrolei Sinica, 2024, 45(2): 390-402.]
|
| [45] |
闫建平, 温丹妮, 李尊芝, 等. 基于核磁共振测井的低渗透砂岩孔隙结构定量评价方法—以东营凹陷南斜坡沙四段为例[J]. 地球物理学报, 2016, 59(4): 1543-1552.
doi: 10.6038/cjg20160434
|
|
[YAN J P, WEN D N, LI Z Z et al. The quantitative evaluation method of low permeable sandstone pore structure based on nuclear magnetic resonance (NMR) logging[J]. Chinese Journal of Geophysics, 2016, 59(4): 1543-1552.]
|
| [46] |
FAJT M, FHEED A, MACHOWSKI G, et al. Modified low-field NMR method for improved pore space analysis in tight Fe-bearing siliciclastic and extrusive rocks[J]. Lithosphere, 2024, 2024(3): 157.
|
| [47] |
韩啸, 宋兆杰, 邓森, 等. 古龙页岩油注CO2吞吐扩散传质规律及原油动用机制[J]. 石油勘探与开发, 2025, 52(6): 1-12.
|
|
[HAN X, SONG Z J, DENG S, et al. Diffusion, mass transfer and oil mobilization mechanisms of CO2 huff-n-puff in Gulong shale oil reservoir[J]. Petroleum Exploration and Development, 2025, 52(6): 1-12.]
doi: 10.1016/S1876-3804(25)60001-2
URL
|