[1] |
马永生, 蔡勋育, 黎茂稳, 等. 深层-超深层海相碳酸盐岩成储成藏机理与油气藏开发方法研究进展[J]. 石油勘探与开发, 2024, 51(4): 692-707.
doi: 10.11698/PED.20240072
|
|
[MA Y S, CAI X Y, LI M W, et al. Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates[J]. Petroleum Exploration and Development, 2024, 51(4): 692-707.]
|
[2] |
郭旭升. 加强勘探理论技术攻关迈向油气能源科技强国[J]. 中国石化, 2024, 3: 17-20.
|
|
[GUO X S. Strengthen exploration theory and technology research to move towards a powerful country in oil and gas energy science and technology[J]. Sinopec, 2024, 3: 17-20.]
|
[3] |
何登发, 贾承造, 赵文智, 等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发, 2023, 50(6): 1162-1172.
doi: 10.11698/PED.20230269
|
|
[HE D F, JIA C Z, ZHAO W Z, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6): 1162-1172.]
|
[4] |
黄娟, 叶德燎, 韩彧. 超深层油气藏石油地质特征及其成藏主控因素分析[J]. 石油实验地质, 2016, 38(5): 635-640.
|
|
[HUANG J, YE D L, HAN Y. Petroleum geological characteristics and main controlling factors of ultra-deep oil and gas reservoirs[J]. Petroleum Geology & Experiment, 2016, 38(5): 635-640.]
|
[5] |
贾承造. 含油气盆地深层-超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 1-12.
|
|
[JIA C Z. Scientific and technological issues in deep and ultra-deep oil and gas exploration and development in petroliferous basins[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 1-12.]
|
[6] |
关晓东, 郭磊. 深层-超深层油气成藏研究新进展及展望[J]. 石油实验地质, 2023, 45(2): 203-209.
|
|
[GUAN X D, GUO L. New progress and prospects of deep and ultra-deep hydrocarbon accumulation research[J]. Petroleum Geology & Experiment, 2023, 45(2): 203-209.]
|
[7] |
李建忠, 陶小晚, 白斌, 等. 中国海相超深层油气地质条件、成藏演化及有利勘探方向[J]. 石油勘探与开发, 2021, 48(1): 52-67.
doi: 10.11698/PED.2021.01.05
|
|
[LI J Z, TAO X W, BAI B, et al. Geological conditions, hydrocarbon accumulation evolution and favorable exploration directions of marine ultra-deep oil and gas in China[J]. Petroleum Exploration and Development, 2021, 48(1): 52-67.]
|
[8] |
张荣虎, 曾庆鲁, 王珂, 等. 储层构造动力成岩作用理论技术新进展与超深层油气勘探地质意义[J]. 石油学报, 2020, 41(10): 1278-1292.
doi: 10.7623/syxb202010012
|
|
[ZHANG R H, ZENG Q L, WANG K, et al. New progress in the theory and technology of reservoir tectonic dynamic diagenesis and its geological significance for ultra-deep oil and gas exploration[J]. Acta Petrolei Sinica, 2020, 41(10): 1278-1292.]
|
[9] |
WU L L, LIAO Y H, FANG Y X, et al. The comparison of biomarkers released by hydropyrolysis and Soxhlet extraction from source rocks of different maturities[J]. Chinese Science Bulletin, 2013, 58(3): 373-383.
|
[10] |
HUANG X W, JIN Z J, LIU Q Y, et al. Catalytic hydrogenation of post-mature hydrocarbon source rocks under deep-derived fluids: An example of early Cambrian Yurtus Formation, Tarim Basin, NW China[J]. Frontiers in Earth Science, 2021, 9: 626111.
|
[11] |
HUANG H, ZHANG S, SU J. Palaeozoic oil-source correlation in the Tarim Basin, NW China: A review[J]. Organic Geochemistry, 2016, 94: 32-46.
|
[12] |
贾承造, 张水昌. 中国海相超深层油气形成[J]. 地质学报, 2023, 97(9): 2775-2801.
|
|
[JIA C Z, ZHANG S Z. Formation of marine ultra-deep oil and gas in China[J]. Acta Geologica Sinica, 2023, 97(9): 2775-2801.]
|
[13] |
李毕松, 代林呈, 朱祥, 等. 四川盆地震旦系灯影组沉积储层特征与勘探前景[J]. 地球科学, 2023, 48(8): 2915-2932.
|
|
[LI B S, DAI L C, ZHU X, et al. Sedimentary reservoir characteristics and exploration prospects of Sinian Dengying Formation in Sichuan Basin[J]. Earth Science, 2023, 48(8): 2915-2932.]
|
[14] |
周刚, 文龙, 王文之, 等. 川东高陡构造带震旦系灯影组丘滩相气藏预测[J]. 天然气勘探与开发, 2023, 46(3): 1-13.
doi: 10.12055/gaskk.issn.1673-3177.2023.03.001
|
|
[ZHOU G, WEN L, WANG W Z, et al. Prediction of mound-shoal facies gas reservoirs of Sinian Dengying Formation in the high and steep structural belt of eastern Sichuan[J]. Natural Gas Exploration and Development, 2023, 46(3): 1-13.]
doi: 10.12055/gaskk.issn.1673-3177.2023.03.001
|
[15] |
CHEN Z, SIMONEIT B, WANG T, et al. Biomarker signatures of Sinian bitumens in the Moxi-Gaoshiti Bulge of Sichuan Basin, China: Geological significance for paleo-oil reservoirs[J]. Precambrian Research, 2017, 296: 1-19.
|
[16] |
邓宾, 吴娟, 李文正, 等. 烃类包裹体赋存碳酸盐矿物U-Pb定年及其在油气成藏期次研究中的应用——以川中震旦系灯影组为例[J]. 天然气地球科学, 2023, 34(11): 1887-1898.
doi: 10.11764/j.issn.1672-1926.2023.07.007
|
|
[DENG B, WU J, LI W Z, et al. U-Pb dating of carbonate minerals hosting hydrocarbon inclusions and its application in the study of hydrocarbon accumulation stages: A case study of Sinian Dengying Formation in central Sichuan[J]. Natural Gas Geoscience, 2023, 34(11): 1887-1898.]
doi: 10.11764/j.issn.1672-1926.2023.07.007
|
[17] |
SU A, CHEN H, FENG Y, et al. In situ U-Pb dating and geochemical characterization of multi-stage dolomite cementation in the Ediacaran Dengying Formation, central Sichuan Basin, China: Constraints on diagenetic, hydrothermal and paleo-oil filling events[J]. Precambrian Research, 2022, 368: 106481.
|
[18] |
杨毅, 朱祥, 金民东, 等. 川北地区灯四段台内丘滩储层特征及主控因素[J]. 天然气技术与经济, 2023, 17(3): 24-31.
doi: 10.3969/j.issn.2095-1132.2023.03.004
|
|
[YANG Y, ZHU X, JIN M D, et al. Reservoir characteristics and main controlling factors of intra-platform mound-shoal in the fourth member of Dengying Formation in northern Sichuan[J]. Natural Gas Technology and Economy, 2023, 17(3): 24-31.]
|
[19] |
金民东, 李毕松, 朱祥, 等. 四川盆地东北部元坝地区及周缘震旦系灯影组四段储集层特征及主控因素[J]. 石油勘探与开发, 2020, 47(6): 1090-1099.
doi: 10.11698/PED.2020.06.03
|
|
[JIN M D, LI B S, ZHU X, et al. Reservoir characteristics and main controlling factors of the fourth member of Sinian Dengying Formation in Yuanba Area and its periphery in northeastern Sichuan Basin[J]. Petroleum Exploration and Development, 2020, 47(6): 1090-1099.]
|
[20] |
杨佳佳, 孙玮琳, 徐学敏, 等. 高演化烃源岩岩石热解和总有机碳标准物质研制[J]. 地质学报, 2020, 94(11): 3515-3522.
|
|
[YANG J J, SUN W L, XU X M, et al. Development of reference materials for rock pyrolysis and total organic carbon of highly evolved source rocks[J]. Acta Geologica Sinica, 2020, 94(11): 3515-3522.]
|
[21] |
饶松, 朱传庆, 王强, 等. 四川盆地震旦系-下古生界烃源岩热演化模式及主控因素[J]. 地球物理学报, 2013, 56(5): 1549-1559.
|
|
[RAO S, ZHU C Q, WANG Q, et al. Thermal evolution models and main controlling factors of Sinian-Lower Paleozoic source rocks in Sichuan Basin[J]. Chinese Journal of Geophysics, 2013, 56(5): 1549-1559.]
|
[22] |
胡圣标, 汪集旸. 沉积盆地热体制研究的基本原理和进展[J]. 地学前缘, 1995, 2(4): 171-180.
|
|
[HU S B, WANG J Y. Basic principles and progress in the study of thermal regime of sedimentary basins[J]. Earth Science Frontiers, 1995, 2(4): 171-180.]
|
[23] |
HE L, XU H, WANG J. Thermal evolution and dynamic mechanism of the Sichuan Basin during the Early Permian-Middle Triassic[J]. Science China Earth Science, 2011, 54: 1948-1954.
|
[24] |
刘一锋, 邱楠生, 谢增业, 等. 川中古隆起震旦系-下寒武统温压演化及其对天然气成藏的影响[J]. 沉积学报, 2014, 32(3): 601-610.
|
|
[LIU Y F, QIU N S, XIE Z Y, et al. Temperature-pressure evolution of Sinian-Lower Cambrian in central Sichuan paleo-uplift and its influence on natural gas accumulation[J]. Acta Sedimentologica Sinica, 2014, 32(3): 601-610.]
|
[25] |
王铁冠, 戴世峰, 李美俊, 等. 塔里木盆地台盆区地层有机质热史及其对区域地质演化研究的启迪[J]. 中国科学: 地球科学, 2010, 40(10): 1331-1341.
|
|
[WANG T G, DAI S F, LI M J, et al. Thermal history of organic matter in strata of the platform-basin region of the Tarim Basin and its enlightenment to the study of regional geological evolution[J]. Science China Earth Science, 2010, 40(10): 1331-1341.]
|
[26] |
ZHANG B, ZHAO Z, ZHANG S C, et al. Discussion on marine source rocks thermal evolvement patterns in the Tarim Basin and Sichuan Basin, west China[J]. Chinese Science Bulletin 2007, 52(A1): 141-149.
|
[27] |
段金宝, 梅庆华, 李毕松, 等. 四川盆地震旦纪-早寒武世构造-沉积演化过程[J]. 地球科学, 2019, 44(3): 738-755.
|
|
[DUAN J B, MEI Q H, LI B S, et al. Tectonic-sedimentary evolution process of Sinian-Early Cambrian in Sichuan Basin[J]. Earth Science, 2019, 44(3): 738-755.]
|
[28] |
李忠权, 刘记, 李应, 等. 四川盆地震旦系威远-安岳拉张侵蚀槽特征及形成演化[J]. 石油勘探与开发, 2015, 42(1): 26-33.
|
|
[LI Z Q, LIU J, LI Y, et al. Characteristics and formation evolution of Weiyuan-Anyue extensional-erosion trough in Sinian, Sichuan Basin[J]. Petroleum Exploration and Development, 2015, 42(1): 26-33.]
|
[29] |
何登发. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律[J]. 地学前缘, 2022, 29(6): 24-59.
doi: 10.13745/j.esf.sf.2022.8.1
|
|
[HE D F. Formation and evolution, geological structure and hydrocarbon distribution law of multi-cycle superimposed sedimentary basins in China[J]. Earth Science Frontiers, 2022, 29(6): 24-59.]
|
[30] |
丁一, 刘树根, 文龙, 等. 中上扬子地区震旦纪灯影组沉积期碳酸盐岩台地古地理格局及有利储集相带分布规律[J]. 沉积学报, 2024, 42(3): 928-943.
|
|
[DING Y, LIU S G, WEN L, et al. Paleogeographic pattern of carbonate platform and distribution law of favorable reservoir facies belts during Sinian Dengying Formation sedimentary period in the middle and upper Yangtze region[J]. Acta Sedimentologica Sinica, 2024, 42(3): 928-943.]
|
[31] |
DING Y, CHEN D, ZHOU X, et al. Tectono-depositional pattern and evolution of the middle Yangtze Platform (south China) during the Late Ediacaran[J]. Precambrian Research, 2019, 333: 105426.
|
[32] |
ZHU M, ZHANG J, Yang A, et al. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: An integrated approach[J]. Progress in Natural Science, 2004, 13(12): 75-84.
|
[33] |
王广伟. 白云岩化作用与白云岩孔隙的形成-来自实验模拟交代反应的启示[J]. 沉积学报, 2024, 42(2): 632-642.
|
|
[WANG G W. Dolomitization and dolomite pore formation: Insights from experimentally simulated replacement[J]. Acta Sedimentologica Sinica, 2024, 42(2): 632-642.]
|
[34] |
李剑, 马卫, 王义凤, 等. 腐泥型烃源岩生排烃模拟实验与全过程生烃演化模式[J]. 石油勘探与开发, 2018, 45(3): 445-454.
doi: 10.11698/PED.2018.03.09
|
|
[LI J, MA W, WANG Y F, et al. Simulation experiment of hydrocarbon generation and expulsion from sapropelic source rocks and the whole-process hydrocarbon generation evolution model[J]. Petroleum Exploration and Development, 2018, 45(3): 445-454.]
|
[35] |
赵文智, 王兆云, 张水昌, 等. 有机质“接力成气”模式的提出及其在勘探中的意义[J]. 石油勘探与开发, 2005, 32(2): 1-7.
|
|
[ZHAO W Z, WANG Z Y, ZHANG S C, et al. Proposal of the “relay generation of gas from organic matter” model and its significance in exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7.]
|
[36] |
赵文智, 王兆云, 王东良, 等. 分散液态烃的成藏地位与意义[J]. 石油勘探与开发, 2015, 42(4): 401-413.
|
|
[ZHAO W Z, WANG Z Y, WANG D L, et al. The status and significance of dispersed liquid hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2015, 42(4): 401-413.]
|
[37] |
DOMINÉ F, ENGUEHARD F O. Kinetics of hexane pyrolysis at very high pressures: Part 3 Application to geochemical modeling[J]. Organic Geochemistry, 1992, 18(1): 41-49.
|
[38] |
GUO X, HE S, LIU K, et al. Quantitative estimation of overpressure caused by oil generation in petroliferous basins[J]. Organic Geochemistry, 2011, 42(11): 1343-1350.
|
[39] |
ROBERT R B, GANGI A F. Primary migration by oil-generation microfracturing in low-permeability source rocks: Application to the Austin Chalk, Texas[J]. AAPG Bulletin, 1999, 83(5): 727-756.
|
[40] |
NAN S. Gaseous hydrocarbons generated during pyrolysis of petroleum source rocks using unconventional grain-size: Implications for natural gas composition[J]. Organic Geochemistry, 2000, 31(12): 1409-1418.
|
[41] |
姜华, 李文正, 黄士鹏, 等. 四川盆地震旦系灯影组跨重大构造期油气成藏过程与成藏模式[J]. 天然气工业, 2022, 42(5): 11-23.
|
|
[JIANG H, LI W Z, HUANG S P, et al. Hydrocarbon accumulation process and accumulation model of Sinian Dengying Formation in Sichuan Basin across major tectonic periods[J]. Natural Gas Industry, 2022, 42(5): 11-23.]
|
[42] |
郭旭升, 胡宗全, 李双建, 等. 深层-超深层天然气勘探研究进展与展望[J]. 石油科学通报, 2023, 8(4): 461-474.
|
|
[GUO X S, HU Z Q, LI S J, et al. Progress and prospect of natural gas exploration and research in deep and ultra-deep strata[J]. Petroleum Science Bulletin, 2023, 8(4): 461-474.]
|
[43] |
朱联强, 柳广弟, 宋泽章, 等. 川中古隆起北斜坡不同地区灯影组天然气差异及其影响因素——以蓬探1井和中江2 井为例[J]. 石油科学通报, 2021, 6(3): 344-355.
|
|
[ZHU L Q, LIU G D, SONG Z Z, et al. The differences in natural gas from the Dengying Formation in different areas of the north slope of the central Sichuan Paleo-uplift and its controlling factors: Taking Pengtan-1 and Zhongjiang-2 wells as examples[J]. Petroleum Science Bulletin, 2021, 6(3): 344-355.]
|