| [1] |
GALIMOV E M. Isotope organic geochemistry[J]. Organic Geochemistry, 2006, 37: 1200-1262.
doi: 10.1016/j.orggeochem.2006.04.009
URL
|
| [2] |
STAHL W J. Source rock-crude oil correlation by isotopic type-curves[J]. Geochimica et Cosmochimica Acta, 1978, 42: 1573-1577.
doi: 10.1016/0016-7037(78)90027-3
URL
|
| [3] |
CLAYTON C J. Effect of maturity on carbon isotope ratios of oils and condensates[J]. Org. Geochem, 1991, 17: 887-899
doi: 10.1016/0146-6380(91)90030-N
URL
|
| [4] |
张爱云, 蔡云开, 初志明, 等. 沉积有机质中稳定碳同位素逆转现象初探[J]. 沉积学报, 1992, 10(4): 49-59.
|
|
[ZHANG A Y, CAI C K, CHU Z M, et al. Preliminary study on the reversed distribution of stable carbon isotopes in sedimentary organic matter[J]. Acta Sedimentology, 1992, 10(4): 49-59.]
|
| [5] |
PETERSEN H I, SCHOVSBO N H, NIELSEN A T. Reflectance measurements of zooclasts and solid bitumen in Lower Palaeozoic shales, southern Scandinavia: correlation to vitrinite reflectance[J]. International Journal of Coal Geology, 2013, 114: 1-18.
doi: 10.1016/j.coal.2013.03.013
URL
|
| [6] |
YANG F L, WANG T G, LI M J. Oil filling history of the Mesozoic oil reservoir in the Tabei Uplift of Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2016, 142: 129-140.
doi: 10.1016/j.petrol.2016.02.005
URL
|
| [7] |
马安来, 李慧莉, 李杰豪, 等. 塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比[J]. 天然气地球科学, 2020, 31(1): 47-60.
doi: 10.11764/j.issn.1672-1926.2019.08.005
|
|
[MA A L, LI H L, LI J H, et al. The geochemical characteristics of Middle-Upper Ordovician source rocks in Keping outcrops profiles and marine oil-source correlation, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2020, 31(1): 47-60.]
|
| [8] |
曹自成, 平宏伟, 陈红汉, 等. 塔里木盆地顺北地区干酪根碳同位素恢复及下寒武统玉尔吐斯组烃源岩生烃模式探讨[J/OL]. 地球科学. doi: 10.3799/dqkx.2025.182.
|
|
[CAO Z C, PING H W, CHEN H H, et al. Reconstruction of carbon isotope of kerogen in the Shunbei area, Tarim Basin and discussions on hydrocarbon generation model of the Lower Cambrian Yurtus Formation source rock[J/OL]. Earth Science. doi: 10.3799/dqkx.2025.182 ]
|
| [9] |
刘文汇, 王杰, 腾格尔, 等. 油气同位素地球化学研究现状与进展[J]. 地质学报, 2015, 89(S1): 160-163.
|
|
[LIU W H, WANG J, TENG G E, et al. Research status and progress of hydrocarbon isotope geochemistry[J]. Acta Geological Sinica, 2015, 89(S1): 160-163.]
|
| [10] |
戴金星. 天然气中烷烃气碳同位素研究的意义[J]. 天然气工业, 2011, 31(12): 1-6, 123.
|
|
[DAI J X. Significance of the study on carbon isotopes of alkane gases[J]. Natural Gas Industry, 2011, 31(12): 1-6, 123.]
|
| [11] |
LANCET M S, ANDERS E. Carbon isotope fractionation in the Fischer-tropsch synthesis and in meteorites[J]. Science, 1970, 170(3961): 980-982.
pmid: 17834614
|
| [12] |
戴金星, 夏新宇, 秦胜飞, 等. 中国有机烷烃气碳同位素系列倒转的成因[J]. 石油与天然气地质, 2003, 24(1): 1-6.
|
|
[DAI J X, XIA X Y, QIN S F, et al. Causation of partly reversed orders of δ13C in biogenic alkane gas in China[J]. Oil & Gas Geology, 2003, 24(1): 1-6.]
|
| [13] |
XIA X Y, CHEN J, BRAUN R, et al. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J]. Chemical Geology, 2013, 339: 205-212.
doi: 10.1016/j.chemgeo.2012.07.025
URL
|
| [14] |
李剑, 王晓波, 侯连华, 等. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
doi: 10.11764/j.issn.1672-1926.2021.07.018
|
|
[LI J, WANG X B, HOU L H, et al. Geochemical characteristics and resource potential of shale gas in Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(8): 1093-1106.]
doi: 10.11764/j.issn.1672-1926.2021.07.018
|
| [15] |
付娆, 陈践发, 刘凯旋, 等. 四川盆地中部地区深层天然气碳同位素倒转成因及地质意义[J]. 天然气地球科学, 2025, 36(8): 1570-1585.
doi: 10.11764/j.issn.1672-1926.2025.05.008
|
|
[FU R, CHEN J F, LIU K X, et al. Carbon isotopic reversal genesis and geological significance of deep natural gas in the central Sichuan Basin, China[J]. Natural Gas Geoscience, 2025, 36(8): 1570-1585.]
|
| [16] |
田辉, 肖贤明, 李贤庆, 等. 海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究[J]. 地球化学, 2007, 36(1): 71-77.
|
|
[TIAN H, XIAO X M, LI X Q, et al. Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen-and crude oil-cracking gases[J]. Geochimica, 2007, 36(1): 71-77.]
doi: 10.1016/0016-7037(72)90121-4
URL
|
| [17] |
CLOSE H G, BOVEE R, PEARSON A. Inverse carbon isotope patterns of lipids and kerogen record heterogeneous primary biomass[J]. Geobiology, 2011, 9: 250-265.]
doi: 10.1111/j.1472-4669.2011.00273.x
pmid: 21366841
|
| [18] |
满勇, 魏琳, 邓勇, 等. 涠西南凹陷A洼及周缘含油构造油藏地球化学性质及成藏特征[J]. 石油科学通报, 2022, 7(2): 155-173.
|
|
[MAN Y, WEI L, DENG Y, LI W, et al. Oil geochemical and accumulation characterization in the A sag and surrounding oil-bearing structures of the Weixinan depression, Beibuwan Basin[J]. Petroleum Science Bulletin, 2022, 7(2): 155-173.]
|
| [19] |
胡国艺, 贺飞, 米敬奎, 等. 川西北地区海相烃源岩地球化学特征、分布规律及天然气勘探潜力[J]. 天然气地球科学, 2021, 32: 319-333.
doi: 10.11764/j.issn.1672-1926.2021.01.013
|
|
[HU G Y, HE F, MI J K, et al. The geochemical characteristics, distribution patterns, and gas exploration potential of marine source rocks in northwest Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32: 319-333.]
|
| [20] |
HORSFIELD B, SCHENK H J, MILLS N, et al. An investigation of the in-reservoir conversion of oil to gas: Compositional and kinetic findings from closed-system programmed-temperature pyrolysis[J]. Organic Geochemistry, 1992, 19: 191-204.
doi: 10.1016/0146-6380(92)90036-W
URL
|
| [21] |
GENG A, LIAO Z. Kinetic studies of asphaltene pyrolyses and their geochemical applications[J]. Applied Geochemistry, 2002, 17: 1529-1541.
doi: 10.1016/S0883-2927(02)00053-7
URL
|
| [22] |
DING J, ZHANG L, ZHANG Y, et al. A reactive molecular dynamics study of n-heptane pyrolysis at high temperature[J]. Journal of Physical Chemistry A, 2013, 117: 3266-3278.
doi: 10.1021/jp311498u
pmid: 23544797
|
| [23] |
LORANT F, BEHAR F, VANDENBROUCKE M, et al. Methane generation from methylated aromatics: Kinetic study and carbon isotope modeling[J]. Energy & Fuels, 2000, 14, 6: 1143-1155.
|
| [24] |
CONNAN J. Time-temperature relation in oil genesis[J]. AAPG Bulletin, 1976, 58: 2516-2521.
|
| [25] |
MILNER C W D, ROGERS M A, EVANS C R. Petroleum transformations in reservoirs[J]. Journal of Geochemistry Exploration, 1977, 7: 101-153.
|
| [26] |
JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”) [J]. International Journal of Coal Geology, 1989, 11: 65-79.
doi: 10.1016/0166-5162(89)90113-4
URL
|
| [27] |
YANG C, NI Z, LI M, et al. Pyrobitumen in south China: Organic petrology, chemical composition and geological significance[J]. International Journal of Coal Geology, 2018, 188: 51-63.
doi: 10.1016/j.coal.2018.01.014
URL
|
| [28] |
MASTALERZ M, AGNIESZKA D, STANKIEWICZ A B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review[J]. International Journal of Coal Geology, 2018, 195: 14-36.
doi: 10.1016/j.coal.2018.05.013
URL
|
| [29] |
LEWAN M D, DOLAN M P, CURTIS J B. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments[J]. AAPG Bulletin, 2014, 98 (6): 1091-1109.
doi: 10.1306/10091313059
URL
|
| [30] |
XIONG Y Q, JIANG W M, WANG X T, et al. Formation and evolution of solid bitumen during oil cracking[J]. Marine Petroleum Geology, 2016, 78: 70-75.
doi: 10.1016/j.marpetgeo.2016.09.008
URL
|
| [31] |
LEI R, XIONG Y Q, LI Y, et al. Main factors influencing the formation of thermogenic solid bitumen[J]. Organic Geochemistry, 2018, 121: 155-160.
doi: 10.1016/j.orggeochem.2018.01.004
URL
|
| [32] |
CHEN J, JIA W L, YU C L, et al. Bound hydrocarbons and structure of pyrobitumen rapidly formed by asphaltene cracking: Implications for oil-source correlation[J]. Organic Geochemistry, 2020, 146: 104053.
doi: 10.1016/j.orggeochem.2020.104053
URL
|
| [33] |
朱联强, 柳广弟, 宋泽章, 等. 川中古隆起北斜坡不同地区灯影组天然气差异及其影响因素——以蓬探1井和中江2 井为例[J]. 石油科学通报, 2021, 6(3): 344-355.
|
|
[ZHU L Q, LIU G D, SONG Z Z, et al. The differences in natural gas from the Dengying Formation in different areas of the north slope of the central Sichuan Paleo-Uplift and its controlling factors: Taking Pengtan-1 and Zhongjiang-2 wells as examples[J]. Petroleum Science Bulletin, 2021, 6(3): 344-355.]
|
| [34] |
邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293.
|
|
[ZOU C, DU J, XU C, et al. Formation, distribution, resource potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.]
|
| [35] |
ZHU G, WANG T, XIE Z, et al. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China: Implications for gas exploration in old cratonic basins[J]. Precambrian Research, 2015, 262: 45-66.
doi: 10.1016/j.precamres.2015.02.023
URL
|
| [36] |
李亚丁, 陈友莲, 严威, 等. 四川盆地寒武系沧浪铺组沉积演化特征[J]. 天然气地球科学, 2021, 32(9): 1334-1346.
doi: 10.11764/j.issn.1672-1926.2021.03.010
|
|
[LI Y D, CHEN Y L, YAN W, et al. Research on sedimentary evolution characteristics of Cambrian Canglangpu Formation, Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(9): 1334-1346.]
|
| [37] |
雍锐, 石学文, 罗超, 等. 四川盆地寒武系筇竹寺组页岩气“槽-隆”富集规律及勘探前景[J]. 石油勘探与开发, 2024, 51(6): 1211-1226.
doi: 10.11698/PED.20230616
|
|
[YONG R, SHI X W, LUO C, et al. Aulacogen-uplift enrichment pattern and exploration prospect of Cambrian Qiongzhusi Formation shale gas in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2024, 51(6): 1211-1226.]
|
| [38] |
CHEN Z H, YANG Y M, WANG T G, et al. Dibenzothiophenes in solid bitumens: Use of molecular markers to trace paleo-oil filling orientations in the Lower Cambrian reservoir of the Moxi-Gaoshiti bulge, Sichuan Basin, southern China[J]. Organic Geochemistry, 2017, 108: 94-112.
doi: 10.1016/j.orggeochem.2017.03.013
URL
|
| [39] |
CHENG B, CHEN Z H, CHEN T, et al. Biomarker signatures of the Ediacaran-early Cambrian origin petroleum from the central Sichuan Basin, south China: Implications for source rock characteristics[J]. Marine Petroleum Geology, 2018, 96: 577-590.
doi: 10.1016/j.marpetgeo.2018.05.012
URL
|
| [40] |
FANG X Y, DENG B, GENG A S, et al. Geochemical properties, mechanism of formation, and source of solid bitumen in the Ediacaran Dengying Formation from the central to northern Sichuan Basin, China[J]. Marine Petroleum Geology 2024, 159: 106573.
doi: 10.1016/j.marpetgeo.2023.106573
URL
|
| [41] |
WHITE J L. Mesophase mechanisms in the formation of the microstructure of petroleum coke[J]. ACS Symposium Series, 1976, 21: 282-314.
|
| [42] |
BUCHARDT B, LEWAN M D. Reflectance of vitrinite-like macerals as a thermal maturity index for Cambrian-Ordovician Alum shale, southern Scandinavia[J]. AAPG Bulletin, 1990, 74: 394-406.
|
| [43] |
秦勇, 钟宁宁. 碳酸盐岩有机岩石学:显微组分特性、成因、演化及其与油气关系[M]. 北京: 科学出版社, 1995.
|
|
[QIN Y, ZHONG N N. Organic petrology of carbonate rocks:Characteristics, origin and evolution of macerals with respects to hydrocarbon generation[M]. Beijing: Science Press, 1995.]
|
| [44] |
XIAO X, WILKINS R, LIU D, et al. Investigation of thermal maturity of Lower Palaeozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance: A Tarim Basin case study[J]. Organic Geochemistry, 2000, 31: 1041-1052.
doi: 10.1016/S0146-6380(00)00061-9
URL
|
| [45] |
SCHMIDT J S, ARAUJO C V, SOUZA I V, et al. Hydrous pyrolysis maturation of vitrinite-like and humic vitrinite macerals: Implications for thermal maturity analysis[J]. International Journal of Coal Geology, 2015, 144: 5-14.
|
| [46] |
LUO Q, ZHONG N, QIN J, et al. Thucholite in Mesoproterozoic shales from northern China: Occurrence and indication for thermal maturity[J]. International Journal of Coal Geology, 2014, 125: 1-9.
doi: 10.1016/j.coal.2014.01.009
URL
|
| [47] |
SANEI H, PETERSEN H I, SCHOVSBO N H, et al. Petrographic and geochemical composition of kerogen in the Furongian (U. Cambrian) Alum Shale, central Sweden: Reflections on the petroleum generation potential[J]. International Journal of Coal Geology, 2014, 132: 158-169.
doi: 10.1016/j.coal.2014.08.010
URL
|
| [48] |
KHAN I, ZHONG N, LUO Q, et al. Maceral composition and origin of organic matter input in Neoproterozoic-Lower Cambrian organic-rich shales of Salt Range Formation, Upper Indus Basin, Pakistan[J]. International Journal of Coal Geology, 2020, 217: 103319.
doi: 10.1016/j.coal.2019.103319
URL
|
| [49] |
PETERSEN H I, SANEI H, GELIN F, et al. Kerogen composition and maturity assessment of a solid bitumen-rich and vitrinite-lean shale: Insights from the Upper Jurassic Vaca Muerta shale, Argentina[J]. International Journal of Coal Geology, 2020, 229: 103575.
doi: 10.1016/j.coal.2020.103575
URL
|
| [50] |
YANG C, LI M, WANG T, et al. Texture development of mesophase in reservoir pyrobitumen and the temperature-pressure converting of the gas reservoir in the Chuanzhong Uplift, Southwestern China[J]. Petroleum Science, 2023, 20: 721-732
doi: 10.1016/j.petsci.2022.09.017
URL
|
| [51] |
VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38: 719-833.
doi: 10.1016/j.orggeochem.2007.01.001
URL
|
| [52] |
LUO Q, ZHANG L, ZHONG N, et al. Thermal evolution behavior of the organic matter and a ray of light on the origin of vitrinite-like maceral in the Mesoproterozoic and Lower Cambrian black shales: Insights from artificial maturation[J]. International Journal of Coal Geology, 2021, 244: 103813.
doi: 10.1016/j.coal.2021.103813
URL
|
| [53] |
WANG N, LI M J, HONG H T, et al. Biological sources of sedimentary OM in Neoproterozoic-Lower Cambrian shales in the Sichuan Basin (SW China): Evidence from biomarkers and microfossils[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 516: 342-353.
doi: 10.1016/j.palaeo.2018.12.012
URL
|
| [54] |
GAO P, LIU G, LASH G G, et al. Occurrences and origin of reservoir solid bitumen in Sinian Dengying Formation dolomites of the Sichuan Basin, SW China[J]. International Journal of Coal Geology, 2018, 200: 135-152
doi: 10.1016/j.coal.2018.11.001
URL
|
| [55] |
BROOKS J D, TAYLOR G H. Formation of graphitizing carbons from the liquid phase[J]. Nature, 1965, 3: 697-699.
|
| [56] |
杨程宇, 文龙, 王铁冠, 等. 川中隆起安岳气田古油藏成藏时间厘定[J]. 石油与天然气地质, 2020: 41(3): 492-502.
|
|
[YANG C Y, WEN L, WANG T G, et al. Timing of hydrocarbon accumulation for paleo-oil reservoirs in Anyue Gas Field in Chuanzhong Uplift[J]. Oil & Gas Geology, 2020, 41 (3): 492-502.]
|
| [57] |
YANG C, LI M, NI Z, et al. Paleo-oil reservoir pyrolysis and gas release in the Yangtze Block imply an alternative mechanism for the Late Permian Crisis[J]. Geoscience Frontiers, 2022, 13 (2): 125-138.
|
| [58] |
HE B, XU Y G, SUN L C, et al. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth and Planet Science Letter, 2003, 213: 391-405.
doi: 10.1016/S0012-821X(03)00323-6
URL
|
| [59] |
文龙, 李亚, 易海永, 等. 四川盆地二叠系火山岩岩相与储层特征[J]. 天然气工业, 2019, 39(02): 17-27.
|
|
[WEN L, LI Y, YI H Y, et al. Lithofacies and reservoir characteristics of Permian volcanic rocks in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39: 17-27.]
|
| [60] |
LIU W, QIU N, XU Q C, et al. Precambrian temperature and pressure system of Gaoshiti-Moxi block in the central paleo-uplift of Sichuan Basin, southwest China[J]. Precambrian Research, 2018, 313: 91-108.
doi: 10.1016/j.precamres.2018.05.028
URL
|
| [61] |
ZHU C Q, HU S B, QIU N S, et al. The thermal history of the Sichuan Basin, SW China: Evidence from the deep boreholes[J]. Science China Earth Science 2016, 59: 70-82.
doi: 10.1007/s11430-015-5116-4
URL
|
| [62] |
LEWAN M D. Effects of thermal maturation on stable organic carbon isotopes as determined by hydrous pyrolysis of Woodford Shale[J]. Geochimica et Cosmochimica Acta, 1983, 47(8): 1471-1479.
doi: 10.1016/0016-7037(83)90306-X
URL
|
| [63] |
杨福林. 塔里木盆地台盆区油源问题再研究[D]. 北京: 中国石油大学(北京), 2016.
|
|
[YANG F L. Revisiting of Oil Source in the Cratonic area of The Tarim Basin[D]. Beijing: China University of Petroleum (Beijing), 2016.]
|
| [64] |
林静文, 谢小敏, 文志刚, 等. 塔斯马尼亚油页岩生烃模拟排出油与滞留油地球化学对比Ⅰ: 族组分及同位素组成[J]. 石油实验地质, 2022, 44(1): 150-159.
|
|
[LIN J W, XIE X M, WEN Z G, et al. A comparative study on the geochemical characteristics of expelled and retained oil from hydrocarbon generation simulation of Australian Tasmanian oil shale Ⅰ: Fraction and isotopic compositions[J]. Petroleum Geology & Experiment, 2022, 44(1): 150-159.]
|
| [65] |
LIU Q, ZHU D, JIN Z, et al. Coupled alteration of hydrothermal fluids and thermal sulfate reduction (TSR) in ancient dolomite reservoirs : An example from Sinian Dengying Formation in Sichuan Basin, southern China[J]. Precambrian Research, 2016, 285: 39-57.
doi: 10.1016/j.precamres.2016.09.006
URL
|
| [66] |
ZHANG P W, LIU G D, CAI C F, et al. Alteration of solid bitumen by hydrothermal heating and thermochemical sulfate reduction in the Ediacaran and Cambrian dolomite reservoirs in the central Sichuan Basin, SW China[J]. Precambrian Ressarch, 2019, 321: 277-302.
|
| [67] |
CHU Z Y, WANG M J, LIU D W, et al. Re-Os dating of gas accumulation in Upper Ediacaran to Lower Cambrian dolostone reservoirs, central Sichuan Basin, China[J]. Chemical Geology, 2023, 620: 121342.
doi: 10.1016/j.chemgeo.2023.121342
URL
|
| [68] |
LIU X Y, FAN J J, JIANG H, et al. Fluid history of the lower Cambrian Longwangmiao Formation in the Anyue Gas Field (Sichuan Basin, SW China)[J]. Journal of Petroleum Science and Engineering, 2023: 212308.
|
| [69] |
POWELL T G, MACQUEEN R W. Precipitation of sulfide ores and organic matter. Sulfide reactions at Pine Point, Canada[J]. Science, 1984, 224: 63-66.
doi: 10.1126/science.224.4644.63
URL
|
| [70] |
CAI C, XIANG L, YUAN Y, et al. Sulfur and carbon isotopic compositions of the Permian to Triassic TSR and non-TSR altered solid bitumen and its parent source rock in NE Sichuan Basin[J]. Organic Geochemistry, 2017, 105: 1-12.
doi: 10.1016/j.orggeochem.2016.12.004
URL
|