| [1] |
姚军, 孙致学, 张凯, 等. 非常规油气藏开采中的工程科学问题及其发展趋势[J]. 石油科学通报, 2016, 1(1): 128-142.
|
|
[YAO J, SUN Z X, ZHANG K, et al. Engineering science problems and development trends in unconventional oil and gas reservoir exploitation[J]. Petroleum Science Bulletin, 2016, 1(1): 128-142.]
|
| [2] |
刘成林, 王馨佩, 车长波, 等. 中国非常规油气与可再生能源发展前景[J]. 世界石油工业, 2025, 32(3): 12-21.
|
|
[LIU C L, WANG X P, CHE C B, et al. Development prospects of unconventional oil and gas and renewable energy in China[J]. World Petroleum Industry, 2025, 32(3): 12-21.]
|
| [3] |
贾承造, 庞雄奇, 姜福杰. 中国油气资源研究现状与发展方向[J]. 石油科学通报, 2016, 1(1): 2-23.
|
|
[JIA C Z, PANG X Q, JIANG F J. Current status and development direction of oil and gas resources research in China[J]. Petroleum Science Bulletin, 2016, 1(1): 2-23.]
|
| [4] |
蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术, 2023, 51(4): 184-191.
|
|
[JIANG T X. Discussion on several key issues of the new generation of volume fracturing technology for unconventional reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184-191.]
|
| [5] |
邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26.
|
|
[ZOU C N, YANG Z, CUI J W, et al. Shale oil formation mechanism, geological characteristics and development countermeasures[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.]
|
| [6] |
赵文智, 朱如凯, 刘伟, 等. 中国陆相页岩油勘探理论与技术进展[J]. 石油科学通报, 2023, 8(4): 373-390.
|
|
[ZHAO W Z, ZHU R K, LIU W, et al. Progress in exploration theory and technology of continental shale oil in China[J]. Petroleum Science Bulletin, 2023, 8(4): 373-390.]
|
| [7] |
XIAO L, YUE P, YANG H, et al. Coupled productivity prediction model for multi-stage fractured horizontal wells in low-permeability reservoirs considering threshold pressure gradient and stress sensitivity[J]. Energies 2025, 18, 3654.
|
| [8] |
戴佳成, 王天宇, 田康健, 等. 页岩油储层径向井立体压裂产能预测模型研究[J]. 石油科学通报, 2023, 8(5): 588-599.
|
|
[DAI J C, WANG T Y, TIAN K J, et al. Study on productivity prediction model of radial well three - dimensional fracturing in shale oil reservoir[J]. Petroleum Science Bulletin, 2023, 8(5): 588-599.]
|
| [9] |
陈思源, 刘浩, 金衍, 等. 压裂支撑剂发展综述与展望[J]. 石油科学通报, 2023, 8(3): 330-346.
|
|
[CHEN S Y, LIU H, JIN Y, et al. Review and prospect of fracturing proppant development[J]. Petroleum Science Bulletin, 2023, 8(3): 330-346.]
|
| [10] |
周大伟, 张广清. 超临界CO2压裂诱导裂缝机理研究综述[J]. 石油科学通报, 2020, 5(2): 239-253.
|
|
[ZHOU D W, ZHANG G Q. Review on mechanism of fracture induced by supercritical CO2 fracturing[J]. Petroleum Science Bulletin, 2020, 5(2): 239-253.]
|
| [11] |
LIU X, ZHANG T, YANG H, et al. Explainable machine learning-based method for fracturing prediction of horizontal shale oil wells[J]. Processes, 2023, 11, 2520.
doi: 10.3390/pr11092520
URL
|
| [12] |
陈民锋, 王兆琪, 孙贺东, 等. 考虑应力敏感影响的改进Blasingame产量递减分析方法[J]. 石油科学通报, 2017, 2(1): 53-63.
|
|
[CHEN M F, WANG Z Q, SUN H D, et al. Improved Blasingame production decline analysis method considering stress sensitivity[J]. Petroleum Science Bulletin, 2017, 2(1): 53-63.]
|
| [13] |
廖璐璐. 致密油气藏产能智能预测方法研究[D]. 北京: 中国石油大学(北京), 2023.
|
|
[LIAO L L. Research on intelligent prediction method for tight oil and gas reservoir productivity[D]. Beijing: China University of Petroleum (Beijing), 2023.]
|
| [14] |
郭凡荣. 页岩油藏压裂水平井产能预测研究[D]. 北京: 中国计量大学, 2023.
|
|
[GUO F R. Research on productivity prediction of fractured horizontal wells in shale oil reservoirs[D]. Beijing: China Jiliang University, 2023.]
|
| [15] |
张炳勇. 基于机器学习的致密气井产量预测方法研究[D]. 西安: 西安石油大学, 2024.
|
|
[ZHANG B Y. Research on production prediction method of tight gas wells based on machine learning[D]. Xi’an: Xi’an Shiyou University, 2024.]
|
| [16] |
李雪晨. 数据驱动的压裂水平井产量预测方法及应用研究[D]. 北京: 中国石油大学(北京), 2023.
|
|
[LI X C. Research on data - driven production prediction method and application of fractured horizontal wells[D]. Beijing: China University of Petroleum (Beijing), 2023.]
|
| [17] |
LEE K, LIM J, YOON D, et al. Prediction of shale - gas production at Duvernay Formation using deep - learning algorithm[J]. SPE Journal, 2019, 24(6): 2423-2437.
doi: 10.2118/195698-PA
URL
|
| [18] |
祝元宠, 咸玉席, 李清宇, 等. 基于大数据的页岩气产能预测[J]. 油气井测试, 2019, 28(1): 1-6.
|
|
[ZHU Y C, XIAN Y X, LI Q Y, et al. Big data - based shale gas productivity prediction[J]. Oil & Gas Well Testing, 2019, 28(1): 1-6.]
|
| [19] |
SHI Y, SONG X, SONG G. Productivity prediction of a multilateral - well geothermal system based on a long short - term memory and multi - layer perceptron combinational neural network[J]. Applied Energy, 2021, 282.
|
| [20] |
ZHANG Y, HU J, ZHANG Q. Application of locality preserving projection - based unsupervised learning in predicting the oil production for low - permeability reservoirs[J]. SPE Journal, 2021, 26(3): 1302-1313.
doi: 10.2118/201231-PA
URL
|
| [21] |
WANG T, WANG Q, SHI J, et al. Productivity prediction of fractured horizontal well in shale gas reservoirs with machine learning algorithms[J]. Applied Sciences, 2021, 11(24): 12064.
doi: 10.3390/app112412064
URL
|
| [22] |
CAO Q, BANERJEE R, GUPTA S, et al. Data driven production forecasting using machine learning[C]. SPE Argentina Exploration and Production of Unconventional Resources Symposium, 2016.
|
| [23] |
LUO G, TIAN Y, SHARMA A, et al. Eagle ford well insights using data - driven approaches[C]. International Petroleum Technology Conference. OnePetro, 2019: 1-14.
|
| [24] |
王云金, 周福建, 苏航, 等. 吉木萨尔凹陷页岩油储层压裂参数智能优化方法[J]. 石油勘探与开发, 2025, 52(3): 734-743.
doi: 10.11698/PED.20240675
|
|
[WANG Y J, ZHOU F J, SU H, et al. Intelligent optimization method for fracturing parameters of shale oil reservoir in Jimusar Sag[J]. Petroleum Exploration and Development, 2025, 52(3): 734-743.]
|
| [25] |
SAGHEER A E, KOTB M. Time series forecasting of petroleum production using deep LSTM recurrent networks[J]. Neurocomputing, 2019, 323: 203-213.
doi: 10.1016/j.neucom.2018.09.082
URL
|
| [26] |
张晓东, 李敏, 赵明, 等. 综合时空特征的致密油水平井产量预测方法[J]. 计算机仿真, 2025, 42(5): 141-146.
|
|
[ZHANG X D, LI M, ZHAO M, et al. Production prediction method for tight oil horizontal wells integrating spatiotemporal features[J]. Computer Simulation, 2025, 42(5): 141-146.]
|
| [27] |
DHULIPALA S, MARAM B, RAO R, et al. A comparative analysis of deep learning and ensemble methods for time series forecasting[C]. 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), Goathgaun, Nepal, 2025: 1713-1716.
|
| [28] |
ARYAL S, NADARAJAH D, KASTHURIRATHNA D, et al. Comparative analysis of the application of deep learning techniques for forex rate prediction[C]. 2019 International Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka, 2019: 329-333.
|
| [29] |
VERMA P R, SINGH N P, PANTOLA D, et al. Neural network developments: A detailed survey from static to dynamic models[J]. Computers and Electrical Engineering, 2024, 120(A), 109710.
|
| [30] |
LI W R, WANG L J, DONG Z Z, et al. Reservoir production prediction with optimized artificial neural network and time series approaches[J]. Journal of Petroleum Science and Engineering, 2022, 215(A): 110586.
|
| [31] |
LI Z Y, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[EB/OL]. (2021-05-17)[2023-09-08].
|
| [32] |
叶家巍, 吴克柳, 陈掌星, 等. 基于傅里叶神经算子代理模型的地热开采生产制度优化[J/OL]. 大庆石油地质与开发, 1-9[2025-09-09].
|
|
[YE J W, WU K L, CHEN Z X, et al. Optimization of production system for geothermal exploitation based on surrogate model with Fourier neural operator[J/OL]. Petroleum Geology & Oilfield Development in Daqing, 1-9. [2025-09-09].]
|
| [33] |
刘继伟, 胡天跃, 戴晓峰, 等. 基于深度残差傅里叶神经算子方法压制地震多次波[J]. 地球物理学报, 2024, 67(8): 3089-3108.
|
|
[LIU J W, HU T Y, DAI X F, et al. Suppressing seismic multiples based on deep residual Fourier neural operator[J]. Chinese Journal of Geophysics, 2024, 67 (8): 3089-3108.]
|
| [34] |
李谌, 赵海霞, 白钊蔚, 等. 嵌入傅里叶神经算子的卷积自编码声波速度反演方法[J]. 煤田地质与勘探, 2024, 52(11): 132-140.
|
|
[LI C, ZHAO H X, BAI Z W, et al. Acoustic velocity inversion based on convolutional autoencoder embedded with Fourier neural operator[J]. Coal Geology & Exploration, 2024, 52(11): 132-140.]
|
| [35] |
杨泽鹏, 廖新维, 董鹏, 等. 基于傅里叶神经算子的CO2驱油藏数值模拟代理模型[J/OL]. 大庆石油地质与开发, 1-9[2025-07-12].
|
|
[YANG Z P, LIAO X W, DONG P, et al. Surrogate model for CO2 flooding reservoir numerical simulation based on Fourier neural operator[J/OL]. Petroleum Geology & Oilfield Development in Daqing, 1-9[2025-07-12].]
|
| [36] |
CHOUBINEH A, CHEN J, WOOD D A, COENEN F, MA F. Fourier neural operator for fluid flow in small-shape 2D simulated porous media dataset[J]. Algorithms 2023, 16, 24.
|
| [37] |
KUANG T, LIU J Q, YIN Z L, et al. Fast and robust prediction of multiphase flow in complex fractured reservoir using a Fourier neural operator[J]. Energies, 2023, 16(9): 3765.
doi: 10.3390/en16093765
URL
|
| [38] |
HAN J P, CHEN, Z M, ZHOU B. Transient flow analysis of multistage fractured horizontal wells with varied natural fractures connection relationships[J]. SPE Journal, 2025, 30(4): 19842001.
|
| [39] |
OZKAN E, RAGHAVAN R. New solutions for well-test-analysis problems: Part 1—analytical considerations[J]. SPE Form Eval, 1991, (6): 359-368.
|
| [40] |
姚军, 王萌, 樊冬艳, 等. 考虑层理缝岩性差异的页岩油藏压裂水平井动态分析方法[J]. 中国石油大学学报(自然科学版), 2024, 48(5): 91-102.
|
|
[YAO J, WANG M, FAN D Y, et al. Dynamic analysis method for fractured horizontal wells in shale oil reservoirs considering lithological differences of bedding fractures[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(5): 91-102.]
|
| [41] |
陈志明, 陈昊枢, 廖新维, 等. 基于试井分析的新疆吉木萨尔页岩油藏人工缝网参数反演研究[J]. 石油科学通报, 2019, 4(3): 263-272.
|
|
[CHEN Z M, CHEN H S, LIAO X W, et al. Study on inversion of artificial fracture network parameters of Jimusar shale oil reservoir in Xinjiang based on well test analysis[J]. Petroleum Science Bulletin, 2019, 4(3): 263-272.]
|
| [42] |
KINGMA D P, BA J.A method for stochastic optimization [DB/OL]. (2014-12-22)[2025-07-30].
|
| [43] |
HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[DB/OL].(2016-06-27)[2025-07-30].
|
| [44] |
孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463.
doi: 10.11698/PED.2021.03.02
|
|
[SUN L D, LIU H, HE W Y, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453-463.]
|
| [45] |
孙龙德, 贾承造, 张君峰, 等. 松辽盆地古龙页岩油重点地区资源潜力[J]. 石油学报, 2024, 45(12): 1699-1714.
doi: 10.7623/syxb202412001
|
|
[SUN L D, JIA C Z, ZHANG J F, et al. Resource potential of key areas of Gulong shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2024, 45(12): 1699-1714.]
|
| [46] |
朱国文, 王小军, 张金友, 等. 松辽盆地陆相页岩油富集条件及勘探开发有利区[J]. 石油学报, 2023, 44 (1): 110-124.
doi: 10.7623/syxb202301007
|
|
[ZHU G W, WANG X J, ZHANG J Y, et al. Enrichment conditions and favorable exploration and development areas of continental shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 110-124.]
|
| [47] |
陆加敏, 林铁峰, 付晓飞, 等. 松辽盆地北部青山口组泥页岩沉积古环境研究[J/OL]. 石油科学通报, 1-21[2025-07-30].
|
|
[LU J M, LIN T F, FU X F, et al. Study on sedimentary paleoenvironment of mud shale in Qingshankou Formation, northern Songliao Basin[J/OL]. Petroleum Science Bulletin, 1-21[2025-07-30].]
|
| [48] |
吴磊, 黄小惠, 姜巍, 等. 基于Attention+Bi-LSTM神经网络算法的页岩气井关键测井曲线补全方法[J]. 天然气勘探与开发, 2025, 48(3): 45-53.
doi: 10.12055/gaskk.issn.1673-3177.2025.03.005
|
|
[WU L, HUANG X H, JIANG W, et al. A completing method for key logging curves in shale gas wells based on Attention + Bi-LSTM neural network algorithm[J]. Natural Gas Exploration and Development, 2025, 48(3): 45-53.]
doi: 10.12055/gaskk.issn.1673-3177.2025.03.005
|