[1] |
伍齐乔, 李景瑞, 曹飞, 等. 顺北1井区奥陶系断溶体油藏岩溶发育特征[J]. 中国岩溶, 2019, 38(3): 444-449.
|
|
[WU Q Q, LI J R, CAO F, et al. Karst development characteristics of Ordovician fault-karst reservoirs in Well Area 1 of Shunbei[J]. Karst in China, 2019, 38(3): 444-449.]
|
[2] |
邓兴梁, 闫婷, 张银涛, 等. 走滑断裂断控碳酸盐岩油气藏的特征与井位部署思路——以塔里木盆地为例[J]. 天然气工业, 2021, 41(3): 21-29.
|
|
[DENG X L, YAN T, ZHANG Y T, et al. Characteristics and well location deployment of carbonate reservoirs controlled by strike-slip faults: A case study of Tarim Basin[J]. Natural Gas Industry, 2021, 41(3): 21-29.]
|
[3] |
王清华, 杨海军, 汪如军, 等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4): 58-71.
|
|
[WANG Q H, YANG H J, WANG R J, et al. Exploration, discovery and technological innovation of large oil and gas fields controlled by ultra-deep strike-slip faults in the Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 58-71.]
|
[4] |
刘湘华, 于洋, 刘景涛. 顺北油气田特深井钻井关键技术现状与发展建议[J]. 石油钻探技术, 2024, 52(2): 72-77.
|
|
[LIU X H, YU Y, LIU J T. Current situation and development suggestions of key technologies for ultra-deep well drilling in Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2024, 52(2): 72-77.]
|
[5] |
王伟吉, 李大奇, 金军斌, 等. 顺北油气田破碎性地层井壁稳定技术难题与对策[J]. 科学技术与工程, 2022, 22(13): 5205-5212.
|
|
[WANG W J, LI D J, JIN J B, et al. Technical problems and countermeasures of wellbore stabilization in fractured formations in Shunbei oil and gas field[J]. Science Technology and Engineering, 2022, 22(13): 5205-5212.]
|
[6] |
胡文革. 顺北油气田“深地工程”关键工程技术进展及发展方向[J]. 石油钻探技术, 2024, 52(2): 58-65.
|
|
[HU W G. Progress and development direction of key engineering technology of “deep engineering” in Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2024, 52(2): 58-65.]
|
[7] |
柳贡慧, 查春青, 陈添, 等. 深层超深层油气安全高效开发若干关键问题与新型解决方案[J]. 石油钻探技术, 2024, 52(2): 24-30.
|
|
[LIU G H, ZHA C Q, CHEN T, et al. Key Problems and new solutions for safe and efficient development of deep and ultra-deep oil and gas[J]. Petroleum Drilling Techniques, 2024, 52(2): 24-30.]
|
[8] |
周舟, 李犇, 耿宇迪, 等. 超深破碎型地层岩石力学参数的大数据预测模型[J]. 石油钻探技术, 2024, 52(5): 91-96.
|
|
[ZHOU Z, LI B, GENG Y D, et al. Big data prediction model for rock mechanical parameters of ultra-deep fractured strata[J]. Petroleum Drilling Techniques, 2024, 52(5): 91-96.]
|
[9] |
高德利, 黄文君. 超深井工程理论与技术若干研究进展及发展建议[J]. 石油钻探技术, 2024, 52(2): 1-11.
|
|
[GAO D L, HUANG W J. Some research progress and development suggestions of ultra-deep well engineering theory and technology[J]. Petroleum Drilling Techniques, 2024, 52(2): 1-11.]
|
[10] |
彭红利, 欧彪, 郭杰一, 等. 川西气田长水平段井壁失稳机理及对策[J]. 天然气技术与经济, 2023, 17(3): 48-54.
doi: 10.3969/j.issn.2095-1132.2023.03.008
|
|
[PENG H L, OU B, GUO J Y, et al. Borehole instability mechanism and countermeasures of long horizontal section of western Sichuan gas field[J]. Natural Gas Technology and Economics, 2023, 17(3): 48-54.]
|
[11] |
周延军, 耿应春, 王贵宾, 等. 深部地层岩石力学性质测试与分析研究[J]. 岩土力学, 2011, 32(6): 1625-1630.
|
|
[ZHOU Y J, GENG Y C, WANG G B. et al. Measurement and analysis of mechanical properties of deep strata rocks[J]. Rock and Soil Mechanics, 2011, 32(6): 1625-1630.]
|
[12] |
秦本东, 何军, 谌伦建. 石灰岩和砂岩高温力学特性的试验研究[J]. 地质力学学报, 2009, 15(3): 253-261.
|
|
[QIN B D, HE J, CHEN L J. Experimental study on high-temperature mechanical properties of limestone and sandstone[J]. Chinese Journal of Geomechanics, 2009, 15(3): 253-261.]
|
[13] |
吴勇. 不同含水条件下白云岩力学特性试验研究[D]. 昆明: 昆明理工大学, 2012.
|
|
[WU Y. Experimental study on mechanical properties of dolomite under different water-bearing conditions[D]. Kunming: Kunming University of Science and Technology, 2012.]
|
[14] |
张强勇, 王超, 向文, 等. 塔河油田超埋深碳酸盐岩油藏基质的力学试验研究[J]. 实验力学, 2015, 30(5): 567-576.
|
|
[ZHANG Q Y, WANG C, XIANG W, et al. Experimental study on the mechanics of ultra-buried deep carbonate reservoir matrix in Tahe Oilfield[J]. Journal of Experimental Mechanics, 2015, 30(5): 567-576.]
|
[15] |
潘林华, 张士诚, 程礼军, 等. 围压-孔隙压力作用下碳酸盐岩力学特性实验[J]. 西安石油大学学报(自然科学版), 2014, 29(5): 17-20.
|
|
[PAN L H, ZHANG S C, CHENG L J, et al. Experimental on mechanical properties of carbonate rock under confining pressure-pore pressure[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2014, 29(5): 17-20.]
|
[16] |
SHESHDE E A, CHESHOMI A, GHARECHELOU S. Estimation of mode I static fracture toughness of carbonate rock using small rock fragments[J]. Journal of Petroleum Science and Engineering, 2022, 218.
|
[17] |
陈俊. 微裂隙对白云岩力学特性的影响试验研究[D]. 贵阳: 贵州大学, 2018.
|
|
[CHEN J. Experimental study on the influence of micro-fractures on the mechanical properties of dolomite[D]. Guiyang: Guizhou University, 2018.]
|
[18] |
刘厚彬, 崔帅, 孟英峰, 等. 裂缝性碳酸盐岩微细观组构及力学性能研究[J]. 特种油气藏, 2020, 27(1): 155-161.
|
|
[LIU H B, CUI S, MENG Y F, et al. Study on microscopic structure and mechanical properties of fractured carbonate rocks[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 155-161.]
|
[19] |
杨斌, 张浩, 刘其明, 等. 超深层裂缝性碳酸盐岩力学特性及其主控机制[J]. 天然气工业, 2021, 41(7): 107-114.
|
|
[YANG B, ZHANG H, LIU Q M, et al. Mechanical characteristics and main control mechanism of ultra-deep fractured carbonate rocks[J]. Natural Gas Industry, 2021, 41(7): 107-114.]
|
[20] |
陈军斌, 李育, 马焕焕, 等. 考虑裂缝影响的页岩三轴压缩实验研究[J]. 科学技术与工程, 2020, 20(26): 10778-10782.
|
|
[CHEN J B, LI Y, MA H H, et al. Experimental study on triaxial compression of shale considering the influence of fractures[J]. Science Technology and Engineering, 2020, 20(26): 10778-10782.]
|
[21] |
尚根华, 孔强夫, 王强, 等. 断溶体油藏裂缝闭合规律数值模拟研究[J]. 内蒙古石油化工, 2021, 47(1): 105-110.
|
|
[SHANG G H, KONG Q F, WANG Q, et al. Numerical simulation study on fracture closure law of faulted karst reservoir[J]. Inner Mongolia Petrochemical Industry, 2021, 47(1): 105-110.]
|
[22] |
KALLIMOGIANNIS V, SAROGLOU C. Mechanical properties of carbonate fault rocks[J]. International journal of rock mechanics and mining sciences (Oxford, England: 1997), 2024, 176: 105681.
|
[23] |
DETOURNAY E, DEFOURNY P. A phenomenological model for the drilling action of drag bits[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(1): 13-23.
|