[1] |
贾保印, 刘峰, 刘以荣, 等. LNG接收站回收乙烷的工艺流程分析[J]. 石油工程建设, 2024, 50(03): 35-41+72.
|
|
[JIA B Y, LIU F, LIU Y R, et al. Analysis of ethane recovery process in LNG receiving station[J]. Petroleum Engineering Construction, 2024, 50(03): 35-41+72.]
|
[2] |
PARK J, PARK J, KIM J. Process integration of light hydrocarbon separation and hydrate-based desalination for efficient and practical LNG cold energy recovery[J]. Desalination, 2023, 12(564): 1-10.
|
[3] |
ZHANG R, WU C, SONG W, et al. Energy integration of LNG light hydrocarbon recovery and air separation: Process design and technic-economic analysis[J]. Energy, 2020, 207(118328): 1-12.
|
[4] |
谷卓霖. LNG轻烃回收流程模拟及参数优化[J]. 石油化工应用, 2018, 37(04): 146-149.
|
|
[GU Z L. LNG light hydrocarbon recovery process simulation and parameter optimization[J]. Petrochemical Industry Application, 2018, 37(04): 146-149.]
|
[5] |
付俊涛. LNG储罐贫富液混装过程的动态研究[J]. 油气田地面工程, 2019, 38(10): 98-104.
|
|
[FU J T. Dynamic study on mixed loading process of rich and poor liquid in LNG storage tank[J]. Oil-Gas Field Surface Engineering, 2019, 38(10): 98-104.]
|
[6] |
HUANG K, WANG S, SUN M, et al. Techno-economic comparison and analysis of a novel NGL recovery scheme with three patented schemes[J]. The Open Petroleum Engineering Journal, 2017, 10(1): 19-28.
|
[7] |
KENNETH R. Liquid natural gas processing: US0188996A1[P]. 2003-09-01.
|
[8] |
ERIC P. System and method for recovery of C2+ hydrocarbons in liquefied natural gas: US7069743B2[P]. 2006-07-04.
|
[9] |
华贲, 李亚军, 杨晓梅, 等. 一种液化天然气的轻烃回收方法: CN1318543C[P]. 2006-06-10.
|
|
[HUA B, LI Y, YANG X M, et al. A light hydrocarbon recovery method for liquefied natural gas: CN1318543C[P]. 2006-06-10.]
|
[10] |
周宏, 付森, 钟华, 等. LNG轻烃分离工艺设计及分析[J]. 精细石油化工进展, 2024, 25(03): 43-46.
|
|
[ZHOU H, FU S, ZHONG H, et al. Design and analysis of LNG light hydrocarbon separation process[J]. Advances in Fine Petrochemicals, 2024, 25(03): 43-46.]
|
[11] |
何友祥. LNG轻烃回收流程模拟及参数优化[J]. 上海煤气, 2023, (05): 1-3+13.
|
|
[HE Y X. LNG light hydrocarbon recovery process simulation and parameter optimization[J]. Shanghai Gas, 2023, (05): 1-3+13.]
|
[12] |
邓志安, 李莉, 胡永群, 等. LNG轻烃回收工艺的设计与分析[J]. 低碳化学与化工, 2023, 48(04): 176-182.
|
|
[DENG Z A, LI L, HU Y Q, et al. Design and analysis of light hydrocarbon recovery process of LNG[J]. Low Carbon Science and Chemical Industry, 2023, 48(04): 176-182.]
|
[13] |
张树伟, 王文康, 李政杰, 等. 天然气轻烃回收工艺中CO2冻堵防治技术研究[J]. 石油工程建设, 2024, 50(03): 60-66.
|
|
[ZHANG S W, WANG W K, LI Z J, et al. Research on the prevention and control technology of CO2 freezing blockage in the recovery process of natural gas light hydrocarbons[J]. Petroleum Engineering Construction, 2024, 50(03): 60-66.]
|
[14] |
吴喆庆. 天然气轻烃回收工艺关键参数分析与节能研究[J]. 石油石化节能与计量, 2024, 14(09): 38-42.
|
|
[WU Z Q. Analysis of key parameters and energy-saving research on natural gas light hydrocarbon recovery process[J]. Petroleum & Petrochemical Energy Conservation and Metrology, 2024, 14(09): 38-42.]
|
[15] |
邵青楠, 顾鑫诚, 邓春, 等. 天然气处理工艺建模与模拟进展[J]. 石油科学通报, 2019, 4(02): 192-203.
|
|
[SHAO Q N, GU X C, DENG C, et al. Progress in modeling and simulation of natural gas processing technology[J]. Bulletin of Petroleum Science, 2019, 4(02): 192-203.]
|
[16] |
张力. 基于HYSYS软件的混烃气提脱硫稳定工艺设计研究[J]. 石油工程建设, 2018, 44(03): 37-40.
|
|
[ZHANG L. Research on the stable process design of mixed hydrocarbon stripping desulfurization based on HYSYS software[J]. Petroleum Engineering Construction, 2018, 44(03): 37-40.]
|
[17] |
苑伟民. 应用状态方程预测液化天然气的热物理性质[J]. 石油工程建设, 2018, 44(01): 23-26.
|
|
[YUAN W M. Prediction of thermal physical properties of liquefied natural gas by state equation[J]. Petroleum Engineering Construction, 2018, 44(01): 23-26.]
|
[18] |
许艺欣, 彭星煜, 郭新磊, 等. 基于(火用)分析的凝析油稳定系统优化[J]. 天然气化工—C1化学与化工), 2022, 47(03): 125-132.
|
|
[XU Y X, PENG X Y, GUO X L, et al. Optimization of condensate stabilization system based on exergy analysis[J]. Natural Gas Chemical Industry, 2022, 47(03) : 125-132.]
|
[19] |
吴松, 高城, 尤雪松, 等. 基于(火用)分析的南堡联合站轻烃回收装置改造与优化[J]. 能源化工, 2022, 43(03): 67-73.
|
|
[WU S, GAO C, YOU X S, et al. Reconstruction and optimization of light hydrocarbon recovery unit in Nanpu Joint Station based on exergy analysis[J]. Energy and Chemical Industry, 2022, 43(03): 67-73.]
|
[20] |
倪萍, 秦英, 高海涛, 等. 油田伴生气乙烷回收工艺的改进和综合评价[J]. 石油工程建设, 2025, 51(01): 40-45.
|
|
[NI P, QIN Y, GAO H T, et al. Improvement and comprehensive evaluation of ethane recovery process for associated gas in oil fields[J]. Petroleum Engineering Construction, 2025, 51(01): 40-45.]
|
[21] |
王金波, 蒋洪, 宋晓娟. LNG与NGL联产工艺优化及改进[J]. 石油与天然气化工, 2020, 49(05): 56-62.
|
|
[WANG J B, JIANG H, SONG X J. Optimization and improvement of LNG and NGL coproduction process[J]. Oil & Gas Chemical Industry, 2020, 49(05): 56-62.]
|
[22] |
荣杨佳, 王成雄, 赵云昆, 等. 天然气轻烃回收与提氦联产工艺[J]. 天然气工业, 2021, 41(05): 127-135.
|
|
[RONG Y J, WANG C X, ZHAO Y K, et al. Coproduction process of light hydrocarbon recovery and helium extraction from natural gas[J]. Natural Gas Industry-C1 Chemistry and Engineering, 2021, 41(05): 127-135.]
|
[23] |
李燕玲, 蒋洪, 高万荣. 某气田DHX工艺换热网络改进研究[J]. 天然气化工—C1化学与化工, 2018, 43(02): 79-83.
|
|
[LI Y L, JIANG H, GAO W R. Research on improvement of DHX process heat transfer network in a gas field[J]. Natural Gas Chemical Industry, 2018, 43(02): 79-83.]
|
[24] |
李浩玉, 蒋洪, 胡成星, 等. 天然气半贫液脱碳工艺换热网络优化[J]. 天然气化工—C1化学与化工, 2021, 46(01): 85-89.
|
|
[LI H Y, JIANG H, HU C X, et al. Optimization of heat exchange network in natural gas semi-lean liquid decarburization process[J]. Natural Gas Chemical Industry-C1 Chemistry and Engineering, 2021, 46(01): 85-89.]
|
[25] |
姚丽蓉, 赵德银, 崔伟, 等. 基于响应面分析法的天然气脱氮工艺优化[J]. 天然气化工—C1化学与化工, 2020, 45(06): 75-81.
|
|
[YAO L R, ZHAO D Y, CUI W, et al. Optimization of natural gas nitrogen removal process based on response surface analysis[J]. Natural Gas Chemical Industry-C1 Chemistry and Engineering, 2019, 45(06): 75-81.]
|
[26] |
王晓磊, 吕小明, 廖明旺, 等. 基于响应面分析法的天然气乙烷回收工艺参数优化[J]. 天然气化工—C1化学与化工, 2022, 47(02): 122-128.
|
|
[WANG X L, LU X M, LIAO M W, et al. Optimization of ethane recovery process parameters of natural gas based on response surface analysis[J]. Natural Gas Chemical Industry-C1 Chemistry and Engineering, 2022, 47(02): 122-128.]
|
[27] |
宋明垚. 集输管道内腐蚀直接评价技术的改进与应用[J]. 石油工程建设, 2022, 48(04): 39-45+51.
|
|
[SONG M Y. Improvement and application of direct evaluation technology for internal corrosion of gathering and transportation pipelines[J]. Petroleum Engineering Construction, 2022, 48(04): 39-45+51.]
|
[28] |
肖荣鸽, 王梦霞, 庄琦, 等. 基于NSGA-Ⅱ算法的DHX工艺轻烃回收参数优化[J]. 天然气化工—C1化学与化工, 2021, 46(06): 104-108+115.
|
|
[XIAO R G, WANG M X, ZHUANG Q, et al. Optimization of light hydrocarbon recovery parameters in DHX process based on NSGA-Ⅱ algorithm[J]. Natural Gas Chemical Industry-C1 Chemistry and Engineering, 2021, 46(06): 104-108+115.]
|
[29] |
文驭天, 蒲红宇, 黄彩英. 基于NSGA-Ⅱ算法的含汞天然气脱水脱烃单元工艺参数优化[J]. 化学工程, 2024, 52(04): 89-94.
|
|
[WEN Y T, PU HONG Y, HUANG C Y. Optimization of process parameters for dehydration and dehydrocarb unit of mercury-containing natural gas based on NSGA-Ⅱ algorithm[J]. Chemical Engineering, 2018, 52(04): 89-94.]
|
[30] |
张智博, 周鑫, 闫昊, 等. 原油直接催化裂解制化学品工艺流程智能建模与代理模型多目标优化[J]. 石油科学通报, 2024, 9(06): 1058-1068.
|
|
[ZHANG Z B, ZHOU X, YAN H, et al. Intelligent modeling and multi-objective optimization of proxy model for the process flow of direct catalytic cracking of crude oil to chemicals[J]. Bulletin of Petroleum Science, 2024, 9(06): 1058-1068.]
|