| [1] |
BORONIN S A, TOLMACHEVA K I, GARAGASH I A, et al. Integrated modeling of fracturing-flowback-production dynamics and calibration on field data: Optimum well startup scenarios[J]. Petroleum Science, 2022, 20(4): 2202-2231.
doi: 10.1016/j.petsci.2022.12.009
URL
|
| [2] |
JIA P, MA M, CAO C, et al. Capturing dynamic behavior of propped and unpropped fractures during flowback and early-time production of shale gas wells using a novel flow-geomechanics coupled model[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109412.
doi: 10.1016/j.petrol.2021.109412
URL
|
| [3] |
QU Z, WANG J, GUO T, et al. Optimization on fracturing fluid flowback model after hydraulic fracturing in oil well[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108703.
doi: 10.1016/j.petrol.2021.108703
URL
|
| [4] |
BARZIN Y, WALKER G. The reversible relationship between Choke management and liquid yield trends in shale reservoirs[C]. SPE Annual Technical Conference and Exhibition, Houston, 2022.
|
| [5] |
ZHAO Y, YANG H, WU J, et al. Choke management simulation for shale gas reservoirs with complex natural fractures using EDFM[J]. Journal of Natural Gas Science and Engineering, 2022, 107: 104801.
doi: 10.1016/j.jngse.2022.104801
URL
|
| [6] |
XIE W, CHANG C, LAI Z, et al. Development of an index system for the optimization of shut-in and flowback stages in shale gas wells[J]. Fluid Dynamics & Materials Processing, 2025, 21(6): 1417-1438.
|
| [7] |
POTAPENKO D I, WILLIAMS R D, DESROCHES J, et al. Securing long-term well productivity of horizontal wells through optimization of postfracturing operations[C]. SPE Annual Technical Conference and Exhibition, San Antonio, 2017.
|
| [8] |
CAMPOS M, POTAPENKO D, MONCADA K, et al. Advanced flowback in the Powder River Basin: Securing stimulation investments[C]. SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, 2019.
|
| [9] |
ROJAS D, LERZA A. Horizontal well productivity enhancement through drawdown management approach in Vaca Muerta shale[C]. SPE Canada Unconventional Resources Conference, Calgary, 2018.
|
| [10] |
WIJAYA N, SHENG J. Effect of compaction and imbibition on benefits of drawdown management in shale oil production: Uncertainty in recovery driving mechanisms[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110014.
doi: 10.1016/j.petrol.2021.110014
URL
|
| [11] |
刘殷韬, 康正, 夏彪, 等. WY区块深层页岩气井压后返排规律及制度研究[J]. 油气井测试, 2024, 33(4): 1-8.
|
|
[LlU Y T, KANG Z, XIA B, et al. Flowback patterns and regimes for deep shale gas wells after fracturing in WY block[J]. Well Testing, 2024, 33(4): 1-8.]
|
| [12] |
李海, 郑马嘉, 赵文韬, 等. 页岩气压后返排油嘴动态调整技术应用及效果评价——以蜀南地区Z201区块H62平台为例[J]. 石油地质与工程, 2025, 39(1): 13-20.
|
|
[LI H, ZHENG M J, ZHAO W T, et al. Application and effectiveness evaluation of dynamic adjustment technology for shale gas pressure flowback nozzle: A case study of the H62 platform of Z201 block in southern Sichuan[J]. Petroleum Geology and Engineering, 2025, 39(1): 13-20.]
|
| [13] |
GUO J, GUO W, KANG L, et al. Machine-learning-based hydraulic fracturing flowback forecasting[J]. Journal of Energy Resources Technology, 2023, 145(8): 083301.
doi: 10.1115/1.4056993
URL
|
| [14] |
郭建成, 林伯韬, 向建华, 等. 四川盆地龙马溪组页岩压后返排率及产能影响因素分析[J]. 石油科学通报, 2019, 4(3): 273-287.
|
|
[GUO J C, LIN B T, XIANG J H, et al. Study of factors affecting the flowback ratio and productive capacity of Longmaxi Formation shale in the Sichuan basin after fracturing[J]. Petroleum Science Bulletin, 2019, 4(3): 273-287.]
|
| [15] |
梁兴, 徐政语, 张介辉, 等. 浅层页岩气高效勘探开发关键技术——以昭通国家级页岩气示范区太阳背斜区为例[J]. 石油学报, 2020, 41(9): 1033-1048.
doi: 10.7623/syxb202009001
|
|
[LIANG X, XU Z Y, ZHANG J H, et al. Key efficient exploration and development technoloiges of shallow shale gas: A case study of Taiyang anticline area of Zhaotong National Shale Gas Demonstration Zone[J]. Acta Petrolei Sinica, 2020, 41(9): 1033-1048.]
|
| [16] |
梁兴, 张介辉, 张涵冰, 等. 浅层页岩气勘探重大发现与高效开发对策研究——以太阳浅层页岩气田为例[J]. 中国石油勘探, 2021, 26(6): 21-37.
|
|
[LIANG X, ZHANG J H, ZHANG H B, et al. Major discovery and high-efficiency development strategy of shallow shale gas: A case study of Taiyang shale gas field[J]. China Petroleum Exploration, 2021, 26(6): 21-37.]
|
| [17] |
蒋佩, 王维旭, 李健, 等. 浅层页岩气井控压返排技术——以昭通国家级页岩气示范区为例[J]. 天然气工业, 2021, 41(S1): 186-191.
|
|
[JANG P, WANG W X, LI J, et al. Pressure control flowback technology for shallow shale gas wells: Taking Zhaotong national shale gas demonstration area as an example[J]. Natural Gas Industry, 2021, 41(S1): 186-191.]
|
| [18] |
黄小青, 韩永胜, 杨庆, 等. 昭通太阳区块浅层页岩气水平井试气返排规律[J]. 新疆石油地质, 2020, 41(4): 457-463.
|
|
[HUANG X Q, HAN Y S, YANG Q, et al. Gas testing flowback rules of shallow shale gas horizontal wells in TY Block of Zhaotong[J]. Xinjiang Petroleum Geology, 2020, 41(4): 457-463.]
|
| [19] |
JING G, CHEN Z, ZHANG K. Studying factors to optimize flowback and productivity of Mfhws in shale gas formations[C]. SPE Western Regional Meeting, Anchorage, 2023.
|
| [20] |
张介辉, 徐云俊, 邹辰, 等. 浅层页岩气成藏地质条件分析——以昭通国家级页岩气示范区麟凤向斜为例[J]. 天然气工业, 2021, 41(S1): 36-44.
|
|
[ZHANG J H, XU Y J, ZOU C, et al. Analysis on the geological conditions for shallow shale gas accumulation: a case study on Linfeng syncline in Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2021, 41(S1): 36-44.]
|
| [21] |
牛卫涛, 朱斗星, 蒋立伟, 等. 复杂山地页岩气藏“甜点”综合评价技术——以昭通国家级页岩气示范区为例[J]. 天然气地球科学, 2021, 32(10): 1546-1558.
doi: 10.11764/j.issn.1672-1926.2021.07.001
|
|
[NIU W T, ZHU D X, JIANG L W, et al. “Sweet spot”comprehensive evaluation technology of complex mountain shale gas reservoir: Taking the Zhaotong national shale gas demonstration zone as an example[J]. Natural Gas Geoscience, 2021, 32 (10): 1546-1558.]
|
| [22] |
梁兴, 单长安, 王维旭, 等. 昭通国家级页岩气示范区勘探开发进展及前景展望[J]. 天然气工业, 2022, 42(8): 60-77.
|
|
[LIANG X, SHAN C A, WANG W X, et al. Exploration and development in the Zhaotong national shale gas demonstrationarea: Progress and propect[J]. Natural Gas Industry, 2022, 42(8): 60-77.]
|
| [23] |
徐政语, 梁兴, 鲁慧丽, 等. 四川盆地南缘昭通页岩气示范区构造变形特征及页岩气保存条件[J]. 天然气工业, 2019, 39(10): 22-31.
|
|
[XU Z Y, LIANG X, LU H L, et al. Structural deformation characteristics and shale gas preservation conditions in the Zhaotong National shale gas demonstration area along the southern margin of the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(10): 22-31.]
|
| [24] |
马新华, 张晓伟, 熊伟, 等. 中国页岩气发展前景及挑战[J]. 石油科学通报, 2023, 8(4): 491-501.
|
|
[MA X H, ZHANG X W, XIONG W, et al. Prospects and challenges of shale gas development in China[J]. Petroleum Science Bulletin, 2023, 8(4): 491-501.]
|
| [25] |
徐政语, 梁兴, 鲁慧丽, 等. 昭通示范区五峰组——龙马溪组页岩气成藏类型与有利区分布[J]. 海相油气地质, 2021, 26(4): 289-298.
|
|
[XU Z Y, LIANG X, LU H L, et al. Shale gas accumulation types and favorable area distribution of Wufeng Formation-Longmaxi Formation in Zhaotong demonstration area[J]. Marine Origin Petroleum Geology, 2021, 26(4): 289-298.]
|
| [26] |
张东涛, 呼赞同, 何叶, 等. 水平井地质导向难点及对策分析——以四川盆地南缘昭通页岩气国家级示范区为例[J]. 天然气地球科学, 2022, 33(8): 1354-1361.
doi: 10.11764/j.issn.1672-1926.2021.12.002
|
|
[ZHANG D T, HU Z T, HE Y, et al. Analysis on the difficulties and countermeasures of geosteering of horizontal wells in Zhaotong national shale gas demonstration zone, southern Sichuan Basin[J]. Natural Gas Geoscience, 2022. 33(8): 1354-1361.]
|
| [27] |
余凯, 鲜成钢, 文恒, 等. 昭通国家级示范区浅层页岩气立体开发探索: 以海坝背斜南翼YS203H1平台为例[J]. 地球科学, 2023, 48(1): 252-266.
|
|
[YU K, XIAN C G, WEN H, et al. Stereoscopic development exploration of shallow shale gas in Zhaotong national shale gas demonstration area: Case Study of YS203H1 Pad of Haiba Anticline Southern Limb[J]. Earth Science, 2023, 48(1): 252-266.]
|
| [28] |
MOUSSA T, DEHGHANPOUR H, FU Y, et al. The use of flowback data for estimating dynamic fracture volume and its correlation with completion-design parameters: Eagle Ford cases[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107584.
doi: 10.1016/j.petrol.2020.107584
URL
|
| [29] |
XU Y, DEHGHANPOUR H, EZULIKE O, et al. Effectiveness and time variation of induced fracture volume: Lessons from water flowback analysis[J]. Fuel, 2017, 210: 844-858.
doi: 10.1016/j.fuel.2017.08.027
URL
|
| [30] |
TOMPKINS D, SIEKER R, KOSELUK D, et al. Managed pressure flowback in unconventional reservoirs: A Permian Basin case study[C]. SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, 2016.
|
| [31] |
LI J, ZHANG G, GE J, et al. Self-healing elastomer modified proppants for proppant flowback control in hydraulic fracturing[J]. Petroleum Science, 2022, 19(1): 245-253.
doi: 10.1016/j.petsci.2021.12.025
URL
|
| [32] |
PUTRI K, LU H, KWOK C K, et al. Flowback in shale wells: Proppant transport and distribution in the wellbore[C]. SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, 2018.
|
| [33] |
CROWE C T, SCHWARZKOPF J D, SOMMERFELD M, et al. Multiphase flows with droplets and particles[M]. Boca Raton: CRC Press, 2011.
|
| [34] |
宋军正. 压裂气井防止支撑剂回流的返排模型及合理产能研究[D]. 成都: 西南石油学院, 2005.
|
|
[SONG J Z. Research on the flowback model and reasonable productivity of fractured gas wells to prevent proppant backflow[D]. Chengdu: Southwest Petroleum University, 2005.]
|
| [35] |
KANG Z, LIU Y T, ZHANG G D, et al. A new fracturing flowback strategy based on proppant backflow factor (PBF): A case study from Weirong and Yongchuan shale gas, Sichuan Basin, China[J/OL]. Petroleum Science and Technology, 2025: 1-22. DOI: 10.1080/10916466.2025.2498141.
|
| [36] |
HU J, ZHAO J, LI Y. A proppant mechanical model in postfrac flowback treatment[J]. Journal of Natural Gas Science and Engineering, 2014, 20: 23-26.
doi: 10.1016/j.jngse.2014.06.005
URL
|
| [37] |
MILLER C, WATERS G, RYLANDER E. Evaluation of production log data from horizontal wells drilled in organic shales[C]. North American Unconventional Gas Conference and Exhibition, Woodlands, 2011.
|
| [38] |
王毅忠, 刘庆文. 计算气井最小携液临界流量的新方法[J]. 大庆石油地质与开发, 2007, 26(6): 82-85.
|
|
[WANG Y Z, LIU Q W. A new method to calculate the minimum critical liquids carrying flow rate for gas wells[J]. Petroleum Geology&Oilfield Development in Daqing, 2007, 26(6): 82-85.]
|