| [1] |
郭为, 柳家正, 张晓伟, 等. 考虑蠕变效应的页岩气水平井控压生产增产机理研究[J]. 力学学报, 2023, 55(3): 630-642.
|
|
[GUO W, LIU J Z, ZHANG X W, et al. Study on the mechanism of drawdown management of shale gas horizontal well considering creep effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 630-642.]
|
| [2] |
金衍, 张亚洲, 卢运虎. 力学化学耦合的硬脆性泥页岩微裂纹扩展机理研究进展与思考[J]. 石油科学通报, 2023, 8(05): 577-587.
|
|
[JIN Y, ZHANG Y Z, LU Y H. Progress and reflections on the microcrack growth mechanism of hard-brittle shale under chemical-mechanical couplings[J]. Petroleum Science Bulletin, 2023, 8(05): 577-587.]
|
| [3] |
COGAN J. Triaxial creep tests of Opohonga limestone and Ophir shale[C]. International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon, 1976, 13(1): 1-10.
|
| [4] |
SONE H, ZOBACK M D. Mechanical properties of shale-gas reservoir rocks—Part 2: Ductile creep, brittle strength, and their relation to the elastic modulus[J]. Geophysics, 2013, 78(5): 393-402.
|
| [5] |
SLIM M, ABEDI S, TARAS B L, et al. Role of organic matter on nanoscale and microscale creep properties of source rocks[J]. Journal of Engineering Mechanics, 2019, 145(1).
|
| [6] |
GUPTA N, MISHRA B. Influence of stress-induced microcracks on viscoplastic creep deformation in Marcellus shale[J]. Acta Geotech, 2021, 16, 1575-1595.
doi: 10.1007/s11440-020-01108-2
|
| [7] |
LI C, WANG J, XIE H. Anisotropic creep characteristics and mechanism of shale under elevated deviatoric stress[J]. Petroleum Science & Engineering Petrol, 2020, 185, 106670.
|
| [8] |
REBER J E, PEC M. Comparison of brittle-and viscous creep in quartzites: Implications for semi-brittle flow of rocks[J]. Journal of Structural Geology, 2018, 113: 90-99.
doi: 10.1016/j.jsg.2018.05.022
URL
|
| [9] |
SONE H, ZOBACK M D. Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in-situ state of stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 69: 120-132.
doi: 10.1016/j.ijrmms.2014.04.002
URL
|
| [10] |
RYBACKI E, HERRMANN J, WIRTH R, et al. Creep of Posidonia shale at elevated pressure and temperature[J]. Rock Mechanics and Rock Engineering, 2017, 50(12): 3121-3140.
doi: 10.1007/s00603-017-1295-y
URL
|
| [11] |
王萍, 屈展, 黄海, 等. 含水状态下硬脆性泥页岩蠕变特性实验研究[J]. 科学技术与工程, 2016, 16(15): 66-71.
|
|
[WANG P, QU Z, HUANG H, et al. Creep experimental study of brittle shale triaxial state under aqueous[J]. Science Technology and Engineering, 2016, 16(15): 66-71.]
|
| [12] |
唐建新, 腾俊洋, 张闯, 等. 层状含水页岩蠕变特性试验研究[J]. 岩土力学, 2018, 39(S1): 33-41.
|
|
[TANG J, TENG J Y, ZHANG C, et al. Experimental study of creep characteristics of layered water bearing shale[J]. Rock and Soil Mechanics, 2018, 39(S1): 33-41.]
|
| [13] |
王艳春, 王永岩, 李剑光, 等. 基于化学酸碱度表征的页岩蠕变模型[J]. 煤炭学报, 2019, 44(S2): 509-516.
|
|
[WANG Y C, WANG Y Y, LI J G, et al. Shale creep equation based on chemical pH value characterization[J]. Journal of China Coal Society, 2019, 44(S2): 509-516.]
|
| [14] |
吴斐, 刘建锋, 武志德, 等. 盐岩的分数阶非线性蠕变本构模型[J]. 岩土力学, 2014, 35(S2): 162-167.
|
|
[WU F, LIU J F, WU Z D, et al. Fractional nonlinear creep constitutive model of salt rock[J]. Rock and Soil Mechanics, 2014, 35(S2): 162-167.]
|
| [15] |
RASSOULI F S, ZOBACK M. D. Comparison of short-term and long-term creep experiments in shales and carbonates from unconventional gas reservoirs[J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 1995-2014.
doi: 10.1007/s00603-018-1444-y
|
| [16] |
LIANG Z, CHEN Z, RAHMAN S. Experimental investigation of the primary and secondary creep behaviour of shale gas reservoir rocks from deep sections of the Cooper Basin[J]. Natural Gas Science and Engineering, 2020, 73, 103044.
|
| [17] |
李荣, 孟英峰, 罗勇, 等. 泥页岩三轴蠕变实验及结果应用[J]. 西南石油大学学报: 自然科学版, 2007, 29(3): 57-59.
|
|
[LI R, MENG Y F, LUO Y, et al. Triaxial creep experiment of shale and its application results[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2007, 29(3): 57-59.]
|
| [18] |
ARASH K A, EHSAN G, PANIA N, et al. Elastic, viscoelastic, and strength properties of Marcellus Shale specimens[J]. Journal of Petroleum & Engineering, 2018, 171, 662-679.
|
| [19] |
宋战平, 王博文, 范胜元, 等. 考虑时效损伤的硬岩非线性蠕变本构模型研究[J]. 岩石力学与工程学报, 2024, 43(10): 2368-2380.
|
|
[SONG Z P, WANG B W, FAN S Y, et al. Nonlinear creep intrinsic modeling of hard rock considering aging damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(10): 2368-2380.]
|
| [20] |
朱元广, 王璇尧, 刘滨, 等. 层状岩石横观各向同性蠕变损伤本构模型研究[J]. 岩土力学, 2025, 46(04): 1095-1108.
|
|
[ZHU Y G, WANG X R, LIU B, et al. Transversely isotropic creep damage constitutive model for layered rocks[J]. Rock and Soil Mechanics, 2025, 46(04): 1095-1108.]
|
| [21] |
邵珠山, 朱意明, 陈浩哲, 等. 深部硬脆性岩石分数阶蠕变损伤模型研究[J]. 应用力学学报, 2024, 41(04): 853-860.
|
|
[SHAO Z S, ZHU Y M, CHEN H Z, et al. Fractional creep damage model for brittle hard rock in depth[J]. Chinese Journal of Applied Mechanics, 2024, 41(04): 853-860.]
|
| [22] |
ZHOU D W, ZHANG G Q, HUANG Z W, et al. Effects of supercritical CO2 on viscoelastic properties of shales[J]. Petroleum Science, 2022, 19(5): 2199-2209.
doi: 10.1016/j.petsci.2022.05.018
URL
|
| [23] |
李忠君, 盛冬发, 程旭, 等. 考虑时效损伤的岩石非线性蠕变模型研究[J]. 力学季刊, 2022, 43(4): 835.
|
|
[LI Z J, SHENG D F, CHENG X, et al. Study of nonlinear creep model for rocks considering Time-Dependent damage[J]. Chinese Quarterly of Mechanics, 2022, 43(4): 835-843.]
doi: 10.15959/j.cnki.0254-0053.2022.04.010
|
| [24] |
范秋雁, 阳克青, 王渭明. 泥质软岩蠕变机制研究[J]. 岩石力学与工程学报, 2010, 29(8): 1555-1561.
|
|
[FAN Q Y, YANG K Q, WANG W M. Study on creep mechanism of muddy soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1555-1561.]
|
| [25] |
杨圣奇, 徐鹏. 一种新的岩石非线性流变损伤模型研究[J]. 岩土工程学报, 2014, 36(10): 1846-1854.
|
|
[YANG S Q, XU P. A new nonlinear rheological damage model for rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1846-1854.]
|
| [26] |
陈有亮, 肖鹏, 杜曦, 等. 岩石非线性黏弹塑性损伤蠕变模型研究[J]. 应用力学学报, 2025, 42(01): 133-140.
|
|
[CHEN Y L, XIAO P, DU X, et al. Study on nonlinear viscoelastic-plastic damage creep model of rock[J]. Chinese Journal of Applied Mechanics, 2025, 42(01): 133-140.]
|
| [27] |
廖崇杰, 陈雷, 古志斌, 等. 海相富有机质页岩储集层特征、成因类型和机制: 以川南长宁五峰组—龙马溪组为例[J]. 古地理学报, 2025, 27(03): 714-730.
|
|
[LIAO C J, CHEN L, GU Z B, et al. Characteristics, genetic types and mechanisms of marine organic-richshale reservoirs: a case study of the Wufeng-Longmaxi Formationsin Changning area, southern Sichuan Basin[J]. Journal of Palaeogeography (Chinese Edition), 2025, 27(03): 714-730.]
|
| [28] |
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(06): 641-653.
|
|
[ZOU C N, DONG D Z, WANG S J, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(06): 641-653.]
doi: 10.1016/S1876-3804(11)60001-3
URL
|
| [29] |
黄莉莎, 闫建平, 胡兴中, 等. 川南五峰组—龙马溪组低阻页岩特征分析及启示[J]. 西南石油大学学报(自然科学版), 2024, 46(02): 26-40.
|
|
[HUANG L S, YAN J P, HU X Z, et al. Characteristics analysis and its enlightenment of shale of low resistivity in Wufeng-Longmaxi Formation in Southern Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2024, 46(2): 26-40.]
|
| [30] |
陈君青, 杨晓斌, 张潇, 等. 页岩力学性质研究中机器学习的应用: 现状、挑战与展望[J]. 石油科学通报, 2025, 1-43.
|
|
[CHEN J Q, YANG X B, ZHANG X, et al. Application of machine learning in the study of shale mechanical properties: Current situation, challenges and prospects[J]. Petroleum Science Bulletin, 2025, 1-43.]
|
| [31] |
刘钦, 李术才, 李利平, 等. 软弱破碎围岩隧道炭质页岩蠕变特性试验研究[J]. 岩土力学, 2012, 33(S2): 21-28.
|
|
[LIU Q, LI S C, LI L P, et al. Experimental study of carbonaceous shale creep characters of weak broken surrounding rock tunnel[J]. Rock and Soil Mechanics, 2012, 33(S2): 21-28.]
|
| [32] |
CHANG C, ZOBACK M D. Viscous creep in room-dried unconsolidated Gulf of Mexico shale (II): Development of a viscoplasticity model[J]. Journal of Petroleum Science and Engineering, 2010, 72(1-2): 50-55.
doi: 10.1016/j.petrol.2010.03.002
URL
|
| [33] |
GENG Z, BONNELYE A, CHEN M, et al. Time and temperature dependent creep in Tournemire shale[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 9658-9675.
doi: 10.1029/2018JB016169
URL
|
| [34] |
梁昌玉, 李晓, 王声星, 等. 岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究[J]. 岩石力学与工程学报, 2012, 31(9): 1830-1838.
|
|
[LIANG C Y, LI X, WANG S X, et al. Experimental study on rate correlation and energy mechanism of stress-strain characteristics of rocks under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1830-1838.]
|
| [35] |
范庆忠, 高延法. 软岩蠕变特性及非线性模型研究[J]. 岩石力学与工程学报, 2007, 26(2): 391-396.
|
|
[FAN Q Z, GAO Y F. Study on creep properties and nonlinear creep model of soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 391-396.]
|
| [36] |
XUE L, QIN S, SUN Q, et al. A study on crack damage stress thresholds of different rock types based on uniaxial compression tests[J]. Rock mechanics and rock engineering, 2014, 47(4): 1183-1195.
doi: 10.1007/s00603-013-0479-3
URL
|
| [37] |
李存宝, 谢和平, 谢凌志. 页岩起裂应力和裂纹损伤应力的试验及理论[J]. 煤炭学报, 2017, 42(04): 969-976.
|
|
[LI C B, XIE H P, XIE L Z. Experimental and theoretical study on the shale crack initiation stress and crack damage stress[J]. Journal of China Coal Society, 2017, 42(04): 969-976.]
|
| [38] |
王小良, 赵毅鑫, 姜耀东, 等. 龙马溪组深部黑色页岩裂纹起裂与损伤阈值的各向异性特征[J]. 煤炭学报, 2021, 46(S1): 231-240.
|
|
[WANG X L, ZHAO Y X, JIANG Y D, et al. Anisotropic characteristics of crack initiation and damage thresholds of deep black shale in Longmaxi Formation[J]. Journal of China Coal Society, 2021, 46(S1): 231-240.]
|
| [39] |
MIGHANI S, BERNABÉ Y, BOULENOUAR A, et al. Creep deformation in Vaca Muerta shale from nanoindentation to triaxial experiments[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 7842-7868.
doi: 10.1029/2019JB017524
URL
|
| [40] |
BRANTUT N, HEAP M J, MEREDITH P G, et al. Time-dependent cracking and brittle creep in crustal rocks: A review[J]. Journal of Structural Geology, 2013, 52: 17-43.
doi: 10.1016/j.jsg.2013.03.007
URL
|
| [41] |
WANG J, YANG C, LIU Y, et al. Creep behavior of marine Wufeng-Longmaxi Formation shales in the Sichuan Basin, Southwest China characterized at micro scale: A case study of exploration well SQ-1 in Sanquan Town, Nanchuan District, Chongqing[J]. Natural Gas Industry B, 2024, 11(4): 357-367.
doi: 10.1016/j.ngib.2024.07.002
URL
|
| [42] |
王建丰, 杨超, 柳宇柯, 等. 纳米压痕技术在页岩力学性质表征中的应用进展[J]. 石油与天然气地质, 2022, 43(02): 477-488.
|
|
[WANG J F, YANG C, LIU Y K, et al. Review on the application of nanoindentation to study of shale mechanical property[J]. Oil & Gas Geology, 2022, 43(2): 477-488.]
|