| [1] |
LI X Y, CRAMPIN S. Linear-transform techniques for processing shear-wave anisotropy in four-component seismic data[J]. Geophysics, 1993, 58(2): 240-256.
doi: 10.1190/1.1443409
URL
|
| [2] |
GUPTA M, DEANGELO M V, HARDAGE B. PP and SS wave interpretation of a carbonate formation: A case study from the Arbuckle interval in Wellington field, Kansas[C]. 85th SEG Annual International Meeting, New Orleans, 2015.
|
| [3] |
ZHANG F, LI X Y. Inversion of the reflected SV-wave for density and S-wave velocity structures[J]. Geophysical Journal International, 2020, 221(3): 1635-1639.
doi: 10.1093/gji/ggaa096
URL
|
| [4] |
李向阳, 张少华. 勘探地震中横波分裂研究四十年回顾(英文)[J]. 石油物探, 2021, 60(2): 190-209.
doi: 10.3969/j.issn.1000-1441.2021.02.002
|
|
[LI X Y, ZHANG S H. Forty years of shear-wave splitting in seismic exploration: An overview[J]. Geophysical Prospecting for Petroleum, 2021, 60(2): 190-209.]
|
| [5] |
ZHANG F. Simultaneous inversion for S-wave velocity and density from the SV-SV wave[J]. Geophysics, 2021, 86(2): R187-R195.
|
| [6] |
DAI F C, ZHANG F, LI X Y. SH-SH wave inversion for S-wave velocity and density[J]. Geophysics, 2022, 87(3): A25-A32.
|
| [7] |
胡鑫, 王国权, 刘俊洲, 等. 基于Zoeppritz方程的纵横波联合反演方法及应用[J]. 石油科学通报, 2022, 7(4): 515-531.
|
|
[HU X, WANG G Q, LIU J Z, et al. The joint PP- and PS-wave inversion method based on the Zoeppritz equations and its application[J]. Petroleum Science Bulletin, 2022, 7(4): 515-531.]
|
| [8] |
SUN H R, LIU E L, ZHANG F, et al. Seismic shear wave noise suppression and application to well tie[J]. Journal of Geophysics Engineering, 2024, 21(6): 1619-1635.
doi: 10.1093/jge/gxae091
URL
|
| [9] |
TESSMER G, BEHLE A. Common reflection point data-stacking technique for converted waves[J]. Geophysical prospecting, 1988, 36(7): 671-688.
doi: 10.1111/gpr.1988.36.issue-7
URL
|
| [10] |
MENGESHA D, SAVAGE M, JOLLY A, et al. Time varying crustal anisotropy at Whakaari/White Island volcano[J]. Geophysical Research Letters, 2024, 51(11): e2023GL106473.
|
| [11] |
GAISER J E. Multicomponent Vp/Vs correlation analysis[J]. Geophysics, 1996, 61(4): 1137-1149.
doi: 10.1190/1.1444034
URL
|
| [12] |
CHEN Q Y, CHEN K, WANG H Q, et al. Prediction of tight sandstone reservoirs by multiwave joint prestack inversion technology: A case study of the Qiulin area in the Sichuan Basin[J]. Interpretation, 2024, 12(3): SE75-SE87.
|
| [13] |
LI X Y, YUAN J, ZIOLKOWSKI A, et al. Estimating Vp/Vs ratio from converted waves-a 4C case example[C]. 61st EAGE Conference & Exhibition, Helsinki, 1999.
|
| [14] |
OGIESOBA O C, STEWART R R. Vp/Vs from multicomponent seismic data and automatic PS to PP time mapping[C]. 73rd SEG Annual International Meeting, Dallas, 2003.
|
| [15] |
THOMSEN L. Converted-wave reflection seismology over inhomogeneous, anisotropic media[J]. Geophysics, 1999, 64(3): 678-690.
doi: 10.1190/1.1444577
URL
|
| [16] |
CHEN S Q, LI X M, LI X Y. Automated time-domain transform of converted waves by prestack double-parameter scanning[J]. Journal of Geophysics Engineering, 2013, 10(4): 045010.
|
| [17] |
GENG W, CHEN X, LI J, et al. Warped P-SV wavelet distortion correction using a time-frequency adaptive shaping filter[J]. Geophysics, 2023, 88(2): V101-V112.
|
| [18] |
FOMEL S, BACKUS M. Multicomponent seismic data registration by least squares[C]. 73rd SEG Annual International Meeting, Dallas, 2003.
|
| [19] |
NICKEL M, SONNELAND L. Automated PS to PP event registration and estimation of a high-resolution Vp-Vs ratio volume[C]. 74th SEG Annual International Meeting, Denver, 2004.
|
| [20] |
HUANG D S, YANG L, XU B L, et al. A high resolution multi-wave matching method based on singular value decomposition[C]. International Field Exploration and Development Conference, Wuhan, 2023.
|
| [21] |
FOMEL S. Local seismic attributes[J]. Geophysics, 2007, 72(3): A29-A33.
|
| [22] |
周紫嫣, 刘洋, 刘财, 等. 基于快速流式算法的局部余弦相似属性[J]. 地球物理学报, 2022, 65(1):349-359.
doi: 10.6038/cjg2022P0244
|
|
[ZHOU Z Y, LIU Y, LIU C, et al. Attribute of local cosine similarity based on a fast-streaming algorithm[J]. Chinese Journal of Geophysics, 2022, 65(1): 349-359.]
|
| [23] |
CHEN S Q, LI X Y, TANG J M. Converted-wave time domain registration using the inverted pseudo-PS-wave attribute section[J]. Journal of Geophysics Engineering, 2014, 11(1): 015007.
|
| [24] |
HALE D. Dynamic warping of seismic images[J]. Geophysics, 2013, 78(2): S105-S115.
doi: 10.1190/geo2012-0327.1
URL
|
| [25] |
BAEK H, KEHO T H. Detection and characterization capabilities of time/amplitude warping[C]. 85st SEG Annual International Meeting, New Orleans, 2015.
|
| [26] |
WANG H R, SACCHI M, MA J W. Linearized dynamic warping with L1-norm constraint for multi-component registration[J]. Journal of Applied Geophysics, 2017, 139: 170-176.
doi: 10.1016/j.jappgeo.2017.02.016
URL
|
| [27] |
蒋雪珍, 芦俊, 王赟. 基于动态图像变形的 PP 与 PS 波层位直接匹配[J]. 地球物理学报, 2017, 60(3): 1106-1117.
doi: 10.6038/cjg20170322
|
|
[JIANG X Z, LU J, WANG Y. PP-and PS-waves matching directly based on dynamic image warping[J]. Chinese Journal of Geophysics, 2017, 60(3): 1106-1117.]
|
| [28] |
张一琛, 陈双全, 靳松, 等. 基于动态时间规整算法的纵波与转换波时间域匹配[J]. 石油科学通报, 2018, 3(2): 144-153.
|
|
[ZHANG Y Z, CHEN S Q, JIN S, et al. Time domain registration of P-and C-waves based on a dynamic time warping algorithm[J]. Petroleum Science Bulletin, 2018, 3(2): 144-153.]
|
| [29] |
KUMAR U, LEGENDRE C P, ZHAO L, et al. Dynamic time warping as an alternative to windowed cross correlation in seismological applications[J]. Seismological Research Letters, 2022, 93(3): 1909-1921.
doi: 10.1785/0220210288
URL
|
| [30] |
TAN J Y, LANGSTON C A. Shape dynamic time warping for seismic waveform inversion[J]. Bulletin of the Seismological Society of America, 2022, 112(6): 2915-2932.
doi: 10.1785/0120220051
URL
|
| [31] |
WANG H R, ZHENG Q F. Improvement and application of Hale’s dynamic time warping algorithm[J]. Symmetry, 2024, 16(6): 645.
doi: 10.3390/sym16060645
URL
|
| [32] |
DHARA A, BAGAINI C. Seismic image registration using multiscale convolutional neural networks[J]. Geophysics, 2020, 85(6): V425-V441.
|
| [33] |
LIU B, YANG S L, REN Y X, et al. Deep-learning seismic full-waveform inversion for realistic structural models[J]. Geophysics, 2021, 86(1): R31-R44.
|
| [34] |
凌里杨, 徐天吉, 冯博, 等. 基于深度学习的多波地震信号智能匹配方法与应用[J]. 石油地球物理勘探, 2022, 57(4): 768-776.
|
|
[LING L Y, XU T J, FENG B, et al. Intelligent matching method based on deep learning for multiwave seismic signals and its application[J]. Oil Geophysical Prospecting, 2022, 57(4): 768-776.]
|
| [35] |
DRAMSCH J S, CHRISTENSEN A N, MACBETH C, et al. Deep unsupervised 4-D seismic 3-D time-shift estimation with convolutional neural networks[J]. IEEE Transactions on Geoscience Remote Sensing, 2021, 60: 1-16.
|
| [36] |
HU Y, YU S. Seismic data registration based on a physically constrained unsupervised framework[J]. IEEE Transactions on Geoscience Remote Sensing, 2025, 63: 1-10.
|
| [37] |
YIN M S, HUANG H P, CHENG L. Molecular fingerprints in shales from the Sanhu biogenic gas fields in eastern Qaidam Basin, NW China: Evidence of biodegradation of shale organic matter[J]. Marine Petroleum Geology, 2021, 133: 105289.
doi: 10.1016/j.marpetgeo.2021.105289
URL
|
| [38] |
魏书映, 陈小宏, 李景叶, 等. 基于散射理论与动态时间规整的时移地震波动方程差异反演[J]. 地球物理学报, 2023, 66(4): 1681-1698.
|
|
[WEI S Y, CHEN X H, LI J Y, et al. Wave-equation-based time-lapse seismic inversion by using dynamic time warping and scattering theory[J]. Chinese Journal of Geophysics, 2023, 66(4): 1681-1698.]
|