| [1] |
曾凡刚, 王玮, 吴燕红, 等. 化石燃料燃烧产物对大气环境质量的影响及研究现状[J]. 中央民族大学学报(自然科学版), 2001(2): 113-120.
|
|
[ZENG F G, WANG W, WU Y H, et al. Effects of fossil fuel combustion products on atmospheric environment quality and research status[J]. Journal of Minzu University of China (Natural Sciences Edition), 2001(2): 113-120.]
|
| [2] |
刘志逊, 刘珍奇, 黄文辉. 中国化石燃料环境污染治理重点及措施[J]. 资源·产业, 2005(5): 53-56.
|
|
[LIU Z X, LIU Z Q, HUANG W H. Key points and measures for environmental pollution control of China’s fossil fuels[J]. Resources & Industries, 2005(5): 53-56.]
|
| [3] |
王雨竹, 贺敏, 王莹, 等. “双碳”目标驱动核电站建设交叉学科发展研究[J]. 高等建筑教育, 2024, 33(6): 58-65.
|
|
[WANG Y Z, HE M, WANG Y, et al. Research on the development of interdisciplinary subjects driven by the “dual carbon” goal in nuclear power plant construction[J]. Tertiary Architectural Education, 2024, 33(6): 58-65.]
|
| [4] |
HAN J, LI J, TANG X, et al. Coal-fired power plant CCUS project comprehensive benefit evaluation and forecasting model study[J]. Journal of Cleaner Production, 2023, 385: 135657.
doi: 10.1016/j.jclepro.2022.135657
URL
|
| [5] |
王建强, 戴志敏, 徐洪杰. 核能综合利用研究现状与展望[J]. 中国科学院院刊, 2019, 34(4): 460-468.
|
|
[WANG J Q, DAI Z M, XU H J. Status and prospects of nuclear energy comprehensive utilization[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 460-468.]
|
| [6] |
王海洋, 荣健. 碳达峰、碳中和目标下中国核能发展路径分析[J]. 中国电力, 2021, 54(6): 86-94.
|
|
[WANG H Y, RONG J. Analysis of China’s nuclear energy development path under the goals of carbon peak and carbon neutrality[J]. Electric Power, 2021, 54(6): 86-94.]
|
| [7] |
方圆, 张万益, 曹佳文, 等. 我国能源资源现状与发展趋势[J]. 矿产保护与利用, 2018(4): 34-42, 47.
|
|
[FANG Y, ZHANG W Y, CAO J W, et al. Status and development trend of energy resources in China[J]. Conservation and Utilization of Mineral Resources, 2018(4): 34-42, 47.]
|
| [8] |
马丽梅, 史丹, 裴庆冰. 中国能源低碳转型(2015—2050): 可再生能源发展与可行路径[J]. 中国人口·资源与环境, 2018, 28(2): 8-18.
|
|
[MA L M, SHI D, PEI Q B. China’s energy low-carbon transition (2015—2050): renewable energy development and feasible path[J]. China Population, Resources and Environment, 2018, 28(2): 8-18.]
|
| [9] |
何建坤. 中国能源革命与低碳发展的战略选择[J]. 武汉大学学报(哲学社会科学版), 2015, 68(1): 5-12.
|
|
[HE J K. Strategic choice of China’s energy revolution and low-carbon development[J]. Wuhan University Journal (Philosophy & Social Sciences), 2015, 68(1): 5-12.]
|
| [10] |
YAN D, ZHU R, LIU W, et al. Metallogenic characteristics and models of sandstone-type uranium deposits in China[J]. Ore Geology Reviews, 2024, 166: 105937.
doi: 10.1016/j.oregeorev.2024.105937
URL
|
| [11] |
LI G, YAO J, SONG Y, et al. A Review of the Metallogenic Mechanisms of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing Basins in China[J]. Engineering, 2023, 4(2): 1723-1741.
|
| [12] |
赵利信, 苏学斌, 吴童盼, 等. 我国低渗透砂岩铀矿: 分布、成因、增渗手段及开发对策[C]// 中国核科学技术进展报告(第八卷)中国核学会2023年学术年会论文集第1册铀矿地质铀矿冶. 中国陕西西安, 2023: 202-209.
|
|
[ZHAO L X, SU X B, WU T P, et al. Low-permeability sandstone-type uranium deposits in China: distribution, genesis, permeability enhancement methods and exploitation strategies[C]// Progress in Nuclear Science and Technology (Vol. VIII) Proceedings of the Chinese Nuclear Society 2023 Academic Annual Meeting Vol. 1 Uranium Geology Uranium Metallurgy. Xi’an, Shaanxi, China, 2023: 202-209.]
|
| [13] |
孙强, 张翼飞, 于春磊, 等. 低渗透砂岩储层压驱裂缝起裂及扩展特征实验研究[J]. 油气地质与采收率, 2024, 31(6): 160-167.
|
|
[SUN Q, ZHANG Y F, YU C L, et al. Experimental study on fracture initiation and propagation characteristics of tight sandstone reservoir by pressure displacement fracturing[J]. Oil and Gas Geology and Recovery, 2024, 31(6): 160-167.]
|
| [14] |
刘志锋, 唐俊贤, 林芝宁, 等. 基于深度可分离卷积混合网络模型的地浸采铀注液量预测研究[J].铀矿冶, 2025(1): 9-17.
|
|
[LIU Z F, TANG J X, LIN Z N, et al. Research on the prediction of injection volume for in-situ leaching uranium mining based on deep separable convolution mixed network model[J]. Uranium Mining and Metallurgy, 2025(1): 9-17.]
|
| [15] |
张飞凤, 苏学斌, 邢拥国, 等. 地浸采铀新工艺综述[J]. 中国矿业, 2012(S1): 9-12.
|
|
[ZHANG F F, SU X B, XING Y G, et al. Review of new technologies for in-situ leaching uranium mining[J]. China Mining Magazine, 2012(S1): 9-12.]
|
| [16] |
阙为民, 王海峰, 田时丰, 等. 我国地浸采铀研究现状与发展[J]. 铀矿冶, 2005(3): 113-117.
|
|
[QUE W M, WANG H F, TIAN S F, et al. Status and development of in-situ leaching uranium mining in China[J]. Uranium Mining and Metallurgy, 2005(3): 113-117.]
|
| [17] |
WANG W, LIANG X, NIU Q, et al. Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits[J]. Nuclear Engineering and Technology, 2023, 55(8): 2773-2784.
doi: 10.1016/j.net.2023.03.034
URL
|
| [18] |
刘书言. 低渗砂岩渗透-水力压裂特性试验研究[D]. 青岛: 中国石油大学(华东), 2024.
|
|
[LIU S Y. Experimental study on permeability and hydraulic fracturing characteristics of low-permeability sandstone[D]. Qingdao: China University of Petroleum (Huadong), 2024.]
|
| [19] |
王如意, 阳奕汉, 桂增杰, 等. 内蒙古某砂岩型铀矿地浸采铀技术的高效优化与应用[J]. 有色金属(矿山部分), 2024(3): 56-64, 78.
|
|
[WANG R Y, YANG Y H, GUI Z J, et al. Efficient optimization and application of in-situ leaching uranium mining technology in a sandstone-type uranium deposit in Inner Mongolia[J]. Nonferrous Metals (Mining Section), 2024(3): 56-64, 78.]
|
| [20] |
孙琳峰. 水力压裂增透技术的应用[J]. 化学工程与装备, 2022(7): 66-67.
|
|
[SUN L F. Application of hydraulic fracturing permeability enhancement technology[J]. Chemical Engineering and Equipment, 2022(7): 66-67.]
|
| [21] |
白鑫, 骆桂君, 王艳, 等. 低渗砂岩型铀矿液态CO2相变致裂增透高效开采新模式[J]. 金属矿山, 2021(7): 50-57.
|
|
[BAI X, LUO G J, WANG Y, et al. New mode of high-efficiency exploitation for low-permeability sandstone-type uranium deposits by liquid CO2 phase change fracturing permeability enhancement[J]. Metal Mine, 2021(7): 50-57.]
|
| [22] |
王雷鸣, 李硕, 尹升华, 等. 深地砂岩铀矿溶浸开采体系孔裂-渗流透明表征与定向干预研究进展[J]. 绿色矿山, 2024, 2(4): 381-396.
|
|
[WANG L M, LI S, YIN S H, et al. Research progress on pore-fracture-seepage transparent characterization and directional intervention in deep sandstone uranium deposit leaching system[J]. Journal of Green Mine, 2024, 2(4): 381-396.]
|
| [23] |
余子贡. 露天采矿技术及发展方向探究[J]. 福建冶金, 2025, 54(1): 12-17.
|
|
[YU Z G. Exploration of open-pit mining technology and development direction[J]. Fujian Metallurgy, 2025, 54(1): 12-17.]
|
| [24] |
杨瑞. 我国露天采矿技术标准化管理及发展趋势[J]. 中国品牌与防伪, 2024(12): 127-128.
|
|
[YANG R. Standardization management and development trend of open-pit mining technology in China[J]. China Brand and Anti-counterfeiting, 2024(12): 127-128.]
|
| [25] |
FARJANA S H, HUDA N, MAHMUD M A P, et al. Comparative life-cycle assessment of uranium extraction processes[J]. Journal of Cleaner Production, 2018, 202: 666-683.
doi: 10.1016/j.jclepro.2018.08.105
URL
|
| [26] |
李小双, 王运敏, 赵奎, 等. 金属矿山露天转地下开采的关键问题研究进展[J]. 金属矿山, 2019(12): 12-20.
|
|
[LI X S, WANG Y M, ZHAO K, et al. Research progress on key issues of open-pit to underground mining in metal mines[J]. Metal Mine, 2019(12): 12-20.]
|
| [27] |
刘国寅, 丁军明, 蒋玉青, 等. 某矿地下开采工艺概述[J]. 中国金属通报, 2024(3): 22-24.
|
|
[LIU G Y, DING J M, JIANG Y Q, et al. Overview of underground mining technology in a certain mine[J]. China Metal Bulletin, 2024(3): 22-24.]
|
| [28] |
李晓伟. 煤矿开采工程中的采矿工艺与技术研究[J]. 内蒙古煤炭经济, 2022(12): 5-8.
|
|
[LI X W. Research on mining technology and process in coal mining engineering[J]. Inner Mongolia Coal Economy, 2022(12): 5-8.]
|
| [29] |
任人, 李明珠. 金属矿地下连续开采技术探讨[J]. 世界有色金属, 2017(4): 188-189.
|
|
[REN R, LI M Z. Discussion on underground continuous mining technology for metal mines[J]. World Nonferrous Metals, 2017(4): 188-189.]
|
| [30] |
吴松平. 金属矿山地下开采中深孔爆破工艺技术优化[J]. 世界有色金属, 2020(15): 49-50+53.
|
|
[WU S P. Optimization of deep hole blasting technology in underground mining of metal mines[J]. World Nonferrous Metals, 2020(15): 49-50+53.]
|
| [31] |
方民新. 煤矿地下开采工艺的现状分析及发展趋势[J]. 当代化工研究, 2021(18): 4-5.
|
|
[FANG M X. Analysis of the current situation and development trend of underground coal mining technology[J]. Contemporary Chemical Research, 2021(18): 4-5.]
|
| [32] |
彭爱全, 谭靖, 唐海, 等. 露天地下联合开采中地下爆破开采对露天边坡的影响研究[J]. 中国矿业, 2025, 34(5): 1-10.
|
|
[PENG A Q, TAN J, TANG H, et al. Study on the influence of underground blasting mining on open-pit slope in joint open-pit and underground mining[J]. China Mining Magazine, 2025, 34(5): 1-10.]
|
| [33] |
苏伟. 露天地下协同开采对矿山地下水渗流场的影响[J]. 采矿技术, 2021, 21(6): 64-68.
|
|
[SU W. Influence of joint open-pit and underground mining on groundwater seepage field in mines[J]. Mining Technology, 2021, 21(6): 64-68.]
|
| [34] |
李钢, 王雷, 张红. 露天矿山转地下开采隔离层安全厚度及采动稳定性研究[J]. 中国安全生产科学技术, 2022, 18(12): 110-115.
|
|
[LI G, WANG L, ZHANG H. Study on the safe thickness of isolation layer and mining stability during open-pit to underground mining[J]. China Safety Science and Technology, 2022, 18(12): 110-115.]
|
| [35] |
李再扬, 王鸿. 露天地下联合开采的相互影响研究[J]. 矿业研究与开发, 2021, 41(8): 12-15.
|
|
[LI Z Y, WANG H. Research on the mutual influence of joint open-pit and underground mining[J]. Mining Research and Development, 2021, 41(8): 12-15.]
|
| [36] |
孙占学, ASGHAR F, 赵凯, 等. 中国铀矿采冶回顾与展望[J]. 有色金属(冶炼部分), 2021(8): 1-8.
|
|
[SUN Z X, ASGHAR F, ZHAO K, et al. Review and prospect of uranium mining and metallurgy in China[J]. Nonferrous Metals (Smelting Section), 2021(8): 1-8.]
|
| [37] |
LI H, LIU M, JIAO T, et al. Using clustering, geochemical modeling, and a decision tree for the hydrogeochemical characterization of groundwater in an in situ leaching uranium deposit in Bayan-Uul, Northern China[J]. Water, 2023, 15(24): 4234.
doi: 10.3390/w15244234
URL
|
| [38] |
刘龙成, 张喆安. 铀的数智化原地浸出动态开采体系的探索与构建[J]. 湿法冶金, 2025, 44(1): 1-9.
|
|
[LIU L C, ZHANG Z A. Exploration and construction of digital intelligence in situ leaching dynamic mining system for uranium[J]. Hydrometallurgy, 2025, 44(1): 1-9.]
doi: 10.1016/S0304-386X(96)00052-7
URL
|
| [39] |
丁鹏杰. 原地浸出注液行为与浸矿剂特征对稀土离子反吸附的影响试验研究[D]. 赣州: 江西理工大学, 2024.
|
|
[DING P J. Experimental study on the influence of in-situ leaching injection behavior and leaching agent characteristics on anti-adsorption of rare earth ions[D]. Ganzhou: Jiangxi University of Science and Technology, 2024.]
|
| [40] |
LI G, YAO J. A Review of In Situ Leaching (ISL) for Uranium Mining[J]. Mining, 2024, 4(1): 120-148.
doi: 10.3390/mining4010009
URL
|
| [41] |
BAIGENZHENOV O, KHABIYEV A, MISHRA B, et al. Uranium (VI) Recovery from Black Shale Leaching Solutions Using Ion Exchange: Kinetics and Equilibrium Studies[J]. Minerals, 2020, 10(8): 689.
doi: 10.3390/min10080689
URL
|
| [42] |
SKRIPCHENKO S Y, NALIVAIKO K A, TITOVA S M, et al. Recovery of uranium from conversion production sludge by leaching with nitric acid and subsequent ion-exchange concentration[J]. Hydrometallurgy, 2024, 224: 106255.
doi: 10.1016/j.hydromet.2023.106255
URL
|
| [43] |
陈梅芳, 苏学斌, 陈箭光, 等. 基于管状浸出实验的地浸开采井间距研究[J]. 中国矿业, 2021, 30(7): 181-186.
|
|
[CHEN M F, SU X B, CHEN J G, et al. Study on well spacing of in-situ leaching mining based on column leaching experiment[J]. China Mining Magazine, 2021, 30(7): 181-186.]
|
| [44] |
王辎鹏. 可地浸砂岩型铀矿井型井距优化——以5点型和7点型为例[J]. 西部探矿工程, 2020, 32(9): 171-174.
|
|
[WANG Z P. Optimization of well pattern and well spacing for leachable sandstone-type uranium deposits—taking 5-spot and 7-spot patterns as examples[J]. Western Exploration Engineering, 2020, 32(9): 171-174.]
|
| [45] |
阙为民. 原地浸出采铀井网密度的确定[J]. 金属矿山, 2002(4): 17-20.
|
|
[QUE W M. Determination of well network density for in-situ leaching uranium mining[J]. Metal Mine, 2002(4): 17-20.]
|
| [46] |
ZENG S, SONG J, SUN B, et al. Seepage characteristics of the leaching solution during in situ leaching of uranium[J]. Nuclear Engineering and Technology, 2023, 55(2): 566-574.
doi: 10.1016/j.net.2022.10.008
URL
|
| [47] |
ZHANG Z, LI J, LI H, et al. Research on conventional leaching process and leaching kinetics of a hard rock uranium mine[J]. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332(12): 4929-4942.
doi: 10.1007/s10967-023-09234-3
|
| [48] |
YAN T Y. Selective uranium oxidation during in situ leaching[J]. Mining, Metallurgy & Exploration, 1993: 178-183.
|
| [49] |
阙为民, 王海峰, 牛玉清, 等. 中国铀矿采冶技术发展与展望[J]. 中国工程科学, 2008(3): 44-53.
|
|
[QUE W M, WANG H F, NIU Y Q, et al. Development and prospects of uranium mining and metallurgy technology in China[J]. Engineering Science, 2008(3): 44-53.]
|
| [50] |
BHARGAVA S K, RAM R, POWNCEBY M, et al. A review of acid leaching of uraninite[J]. Hydrometallurgy, 2015, 151: 10-24.
doi: 10.1016/j.hydromet.2014.10.015
URL
|
| [51] |
ZHOU Y, LI G, XU L, et al. Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching - an example from the Kujieertai[J]. Hydrometallurgy, 2020, 191: 105209.
doi: 10.1016/j.hydromet.2019.105209
URL
|
| [52] |
WANG B, LUO Y, LI X, et al. Water-Rock reactions in the acid leaching of Uranium: Hydrochemical characteristics and reaction mechanisms[J]. Journal of Hydrology, 2024, 641: 131798.
doi: 10.1016/j.jhydrol.2024.131798
URL
|
| [53] |
LASHEEN T A, EL-AHMADY M E, HASSIB H B, et al. Oxidative leaching kinetics of molybdenum-uranium ore in H2SO4 using H2O2 as an oxidizing agent[J]. Frontiers of Chemical Science and Engineering, 2013, 7(1): 95-102.
doi: 10.1007/s11705-013-1317-6
URL
|
| [54] |
RAKISHEV B, KENZHETAEV Z, MATAEV M, et al. Improving the Efficiency of Downhole Uranium Production Using Oxygen as an Oxidizer[J]. Minerals, 2022, 12(8): 1005.
doi: 10.3390/min12081005
URL
|
| [55] |
MUDD G. Critical review of acid in situ leach uranium mining: 1. USA and Australia[J]. Environmental Geology, 2001, 41(3-4): 390-403.
doi: 10.1007/s002540100406
URL
|
| [56] |
MUDD G. Critical review of acid in situ leach uranium mining: 2. Soviet Block and Asia[J]. Environmental Geology, 2001, 41(3-4): 404-416.
doi: 10.1007/s002540100405
URL
|
| [57] |
ALI H N, ATEKWANA E A. The effect of sulfuric acid neutralization on carbonate and stable carbon isotope evolution of shallow groundwater[J]. Chemical Geology, 2011, 284(3-4): 217-228.
doi: 10.1016/j.chemgeo.2011.02.023
URL
|
| [58] |
LIU X, LIU J, XING Y, et al. Spatiotemporal evolutionary patterns of mineral dissolution and precipitation (formation) amount in acid in situ leaching of uranium[J]. Journal of Radioanalytical and Nuclear Chemistry, 2025.
|
| [59] |
JANA A, UNNI A, RAVURU S S, et al. In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor[J]. Chemical Engineering Journal, 2022, 428: 131180.
doi: 10.1016/j.cej.2021.131180
URL
|
| [60] |
GHORBANI Y, MONTENEGRO M R. Leaching behaviour and the solution consumption of uranium-vanadium ore in alkali carbonate-bicarbonate column leaching[J]. Hydrometallurgy, 2016, 161: 127-137.
doi: 10.1016/j.hydromet.2016.02.004
URL
|
| [61] |
GILLIGAN R, NIKOLOSKI A N. Alkaline leaching of brannerite. Part 1: Kinetics, reaction mechanisms and mineralogical transformations[J]. Hydrometallurgy, 2017, 169: 399-410.
doi: 10.1016/j.hydromet.2017.02.020
URL
|
| [62] |
KAKSONEN A H, LAKANIEMI A M, TUOVINEN O H. Acid and ferric sulfate bioleaching of uranium ores: A review[J]. Journal of Cleaner Production, 2020, 264: 121586.
doi: 10.1016/j.jclepro.2020.121586
URL
|
| [63] |
CECAL A, HUMELNICU D, POPA K, et al. Bioleaching of UO22+ ions from poor uranium ores by means of cyanobacteria[J]. Journal of Radioanalytical and Nuclear Chemistry, 2000, 245(2): 427-429.
doi: 10.1023/A:1006707815553
|
| [64] |
KENNEY J P L, LEZAMA-PACHECO J, FENDORF S, et al. Uranium surface processes with sandstone and volcanic rocks in acidic and alkaline solutions[J]. Journal of Colloid and Interface Science, 2023, 645: 715-723.
doi: 10.1016/j.jcis.2023.04.174
pmid: 37172481
|
| [65] |
贺桂成, 张沈平, 扶海鹰, 等. CO2+O2地浸采铀采区含铀砂岩孔隙演化试验研究[J]. 采矿与安全工程学报, 2024, 41(1): 179-189.
|
|
[HE G C, ZHANG S P, FU H Y, et al. Experimental study on pore evolution of uranium-bearing sandstone in CO2+O2 in-situ leaching uranium mining area[J]. Journal of Mining & Safety Engineering, 2024, 41(1): 179-189.]
|
| [66] |
王亚安, 李星浩, 姚益轩, 等. “CO2+O2”地浸采铀含矿层防堵技术研究[J]. 铀矿冶, 2024, 43(3): 17-24.
|
|
[WANG Y A, LI X H, YAO Y X, et al. Study on plugging prevention technology for uranium-bearing formation in “CO2+O2” in-situ leaching uranium mining[J]. Uranium Mining and Metallurgy, 2024, 43(3): 17-24.]
|
| [67] |
刘殿广, 杨蕴, 章勇, 等. 基于cDC-GAN替代模型的物理-化学非均质矿层CO2+O2地浸采铀过程模拟[J]. 中国环境科学, 2024, 44(8): 4547-4556.
|
|
[LIU D G, YANG Y, ZHANG Y, et al. Simulation of CO2+O2 in-situ leaching uranium mining process in physically and chemically heterogeneous ore beds based on cDC-GAN surrogate model[J]. China Environmental Science, 2024, 44(8): 4547-4556.]
|
| [68] |
范元清, 宋昊, 张成江, 等. 钱家店砂岩型铀矿床铀矿物嵌布特征及对中性(CO2+O2)地浸采铀效率的影响[J]. 矿物岩石, 2024, 44(1): 91-100.
|
|
[FAN Y Q, SONG H, ZHANG C J, et al. Characteristics of uranium mineral embedding in Qianjiadian sandstone-type uranium deposit and its influence on the efficiency of neutral (CO2+O2) in-situ leaching uranium mining[J]. Mineral and Rock, 2024, 44(1): 91-100.]
|
| [69] |
CZAPLICKA N, KONOPACKA-ŁYSKAWA D. Utilization of gaseous carbon dioxide and industrial Ca-rich waste for calcium carbonate precipitation: a review[J]. Energies, 2020, 13(23): 6239.
doi: 10.3390/en13236239
URL
|
| [70] |
LU C, XIU W, GUO H, et al. Multi-isotope based identification and quantification of oxygen consuming processes in uranium hosting aquifers with CO2 + O2 in situ leaching[J]. Water Resources Research, 2023, 59(3): e2022WR033980.
|
| [71] |
YANG Y, ZUO J, QIU W, et al. Assessment of the greenhouse gas footprint and environmental impact of CO2 and O2 in situ uranium leaching[J]. Acta Geologica Sinica - English Edition, 2023, 97(3): 986-994.
doi: 10.1111/acgs.v97.3
URL
|
| [72] |
LIU Y, IGLAUER S, CAI J, et al. Local instabilities during capillary-dominated immiscible displacement in porous media[J]. Capillarity, 2019, 2(1): 1-7.
doi: 10.26804/capi
URL
|
| [73] |
WANG Q, LIANG X, WANG W, et al. Mineral composition and full-scale pore structure of qianjiadian sandstone-type uranium deposits: application for In situ leaching mining[J]. Geofluids, 2022, 2022: 1-15.
|
| [74] |
KANAYEV A T, VALIYEV K, BULAEV A. Uranium bioleaching from low grade ore[J]. Materials Science Forum, 2020, 989: 559-563.
doi: 10.4028/www.scientific.net/MSF.989
URL
|
| [75] |
LI J, ZHANG Y. Remediation technology for the uranium contaminated environment: a review[J]. Procedia Environmental Sciences, 2012, 13: 1609-1615.
doi: 10.1016/j.proenv.2012.01.153
URL
|
| [76] |
BANALA U K, DAS N P I, TOLETI S R. Microbial interactions with uranium: towards an effective bioremediation approach[J]. Environmental Technology & Innovation, 2021, 21: 101254.
|
| [77] |
MERUANE G, VARGAS T. Bacterial oxidation of ferrous iron by acidithiobacillus ferrooxidans in the pH range 2.5-7.0[J]. Hydrometallurgy, 2003, 71(1-2): 149-158.
doi: 10.1016/S0304-386X(03)00151-8
URL
|
| [78] |
郑帅, 刘金辉, 郝毅, 等. 酸法浸铀与生物浸铀浸泡试验的对比研究[J]. 广东化工, 2014, 41(6): 19-20.
|
|
[ZHENG S, LIU J H, HAO Y, et al. Comparative study of acid leaching and bioleaching of uranium by immersion experiment[J]. Guangdong Chemical Industry, 2014, 41(6): 19-20.]
|
| [79] |
PETERSEN J. From understanding the rate limitations of bioleaching mechanisms to improved bioleach process design[J]. Hydrometallurgy, 2023, 221: 106148.
doi: 10.1016/j.hydromet.2023.106148
URL
|
| [80] |
RICHTER C, KALKA H, MYERS E, et al. Constraints of bioleaching in in-situ recovery applications[J]. Hydrometallurgy, 2018, 178: 209-214.
doi: 10.1016/j.hydromet.2018.04.008
URL
|
| [81] |
LI Q, XING H, LIU J, et al. A review on hydraulic fracturing of unconventional reservoir[J]. Petroleum, 2015, 1(1): 8-15.
doi: 10.1016/j.petlm.2015.03.008
URL
|
| [82] |
VEATCH R W, MOSCHOVIDIS Z A. An overview of recent advances in hydraulic fracturing technology[C]// International Meeting on Petroleum Engineering. Beijing, China: SPE, 1986: SPE-14085-MS.
|
| [83] |
FALL A, EICHHUBL P, BODNAR R J, et al. Natural hydraulic fracturing of tight-gas sandstone reservoirs, Piceance Basin, Colorado[J]. Geological Society of America Bulletin, 2015, 127(1-2): 61-75.
doi: 10.1130/B31021.1
URL
|
| [84] |
MONTGOMERY C T, SMITH M B. Hydraulic fracturing: history of an enduring technology[J]. Journal of Petroleum Technology, 2010, 62(12): 26-40.
|
| [85] |
HE Q, SUORINENI F T, OH J. Review of hydraulic fracturing for preconditioning in cave mining[J]. Rock Mechanics and Rock Engineering, 2016, 49(12): 4893-4910.
doi: 10.1007/s00603-016-1075-0
URL
|
| [86] |
CONG Z, LI Y, PAN Y, et al. Study on CO2 foam fracturing model and fracture propagation simulation[J]. Energy, 2022, 238: 121778.
doi: 10.1016/j.energy.2021.121778
URL
|
| [87] |
ABOAHMED A K, YOUSSIF M I, PIRI M, et al. Nanofluid-based foam for enhanced oil recovery in fractured carbonates[J]. Energy & Fuels, 2023, 37(19): 14002-14013.
|
| [88] |
ZHENG S, SHARMA M M. Modeling hydraulic fracturing using natural gas foam as fracturing fluids[J]. Energies, 2021, 14(10): 2872.
doi: 10.3390/en14102872
URL
|
| [89] |
WANNIARACHCHI W A M, RANJITH P G, PERERA M S A, et al. Investigation of effects of fracturing fluid on hydraulic fracturing and fracture permeability of reservoir rocks: an experimental study using water and foam fracturing[J]. Engineering Fracture Mechanics, 2018, 199: 466-480.
|
| [90] |
IRVEN G, CAROLAN D, FERGUSSON A, et al. Fracture performance of fibre-reinforced epoxy foam[J]. Composites Part B: Engineering, 2022, 240: 110022.
|
| [91] |
孙振添, 李文, 张进平, 等. 酸化压裂技术对碳酸岩盐储层地热井的增灌能力影响研究[J]. 地球学报, 2025(2): 439-448.
|
|
[SUN Z T, LI W, ZHANG J P, et al. Study on the influence of acid fracturing technology on the injectivity of geothermal wells in carbonate salt rock reservoirs[J]. Acta Geoscientica Sinica, 2025(2): 439-448.]
|
| [92] |
申强. 油气田水平井压裂酸化技术探讨[J]. 中国石油和化工标准与质量, 2024, 44(18): 164-166.
|
|
[SHEN Q. Discussion on fracturing and acidizing technology for horizontal wells in oil and gas fields[J]. China Petroleum and Chemical Standards and Quality, 2024, 44(18): 164-166.]
|
| [93] |
ZENG Q, LI T, BO L, et al. Comprehensive investigation of factors affecting acid fracture propagation with natural fracture[J]. Energies, 2024, 17(21): 5386.
doi: 10.3390/en17215386
URL
|
| [94] |
ALJAWAD M S, SCHWALBERT M P, MAHMOUD M, et al. Impacts of natural fractures on acid fracture design: a modeling study[J]. Energy Reports, 2020, 6: 48-55.
|
| [95] |
ALJAWAD M S. Mineralogy impact on acid fracture design in naturally fractured carbonates[J]. ACS Omega, 2023, 8(15): 14352-14364.
|
| [96] |
GAO B, MOU J, LU P, et al. Numerical investigation into the acid flow and reaction behavior in the tight, naturally fractured carbonate reservoir during acid fracturing[J]. Physics of Fluids, 2024, 36(6): 066601.
doi: 10.1063/5.0211182
URL
|
| [97] |
杨兵. 致密砂岩超临界CO2压裂裂缝起裂及扩展特性研究[D]. 北京: 中国石油大学(北京), 2022.
|
|
[YANG B. Research on fracture initiation and propagation characteristics of tight sandstone supercritical CO2 fracturing[D]. Beijing: China University of Petroleum (Beijing), 2022.]
|
| [98] |
WANG L, ZHENG A, LU W, et al. Analysis of fracturing expansion law of shale reservoir by supercritical CO2 fracturing and mechanism revealing[J]. Energies, 2024, 17(7): 1644.
doi: 10.3390/en17071644
URL
|
| [99] |
HE J, ZHANG Y, LI X, et al. Experimental investigation on the fractures induced by hydraulic fracturing using freshwater and supercritical CO2 in shale under uniaxial stress[J]. Rock Mechanics and Rock Engineering, 2019, 52(12): 4927-4938.
|
| [100] |
张荔, 王博, 吕振虎, 等. 非常规储层整体压裂智能优化[J]. 新疆石油天然气, 2024, 20(4): 36-43.
|
|
[ZHANG L, WANG B, LV Z H, et al. Intelligent optimization of overall fracturing in unconventional reservoirs[J]. Xinjiang Oil & Gas, 2024, 20(4): 36-43.]
|
| [101] |
曾凡辉, 胡大淦, 郭建春, 等. 基于钻录井资料的页岩气水平井分段多簇差异化压裂参数智能优化[J]. 天然气工业, 2025, 45(2): 84-94.
|
|
[ZENG F H, HU D G, GUO J C, et al. Intelligent optimization of staged multi-cluster differential fracturing parameters for shale gas horizontal wells based on drilling and logging data[J]. Natural Gas Industry, 2025, 45(2): 84-94.]
|
| [102] |
莫莉. 光纤微地震检测技术在压裂效果评价中的应用[J]. 江汉石油职工大学学报, 2020, 33(2): 1-3.
|
|
[MO L. Application of fiber optic microseismic detection technology in fracturing effect evaluation[J]. Journal of Jianghan Petroleum University for Staff and Workers, 2020, 33(2): 1-3.]
|
| [103] |
SUN H, HE N, GURKALO F. Application and research of microseismic monitoring system and hydraulic fracturing technology in coal mines[J]. Water, 2024, 16(7): 1062.
doi: 10.3390/w16071062
URL
|
| [104] |
WILLIAMS R T. Coseismic boiling cannot seal faults: implications for the seismic cycle[J]. Geology, 2019, 47(5): 461-464.
doi: 10.1130/G45936.1
|
| [105] |
李根生, 田守嶒, 盛茂, 等. 智能压裂技术研究进展与前景展望[J]. 钻采工艺, 2025, 48(1): 1-9.
|
|
[LI G S, TIAN S C, SHENG M, et al. Research progress and prospect of intelligent fracturing technology[J]. Drilling & Production Technology, 2025, 48(1): 1-9.]
|
| [106] |
CHENG Y. Boundary element analysis of the stress distribution around multiple fractures: implications for the spacing of perforation clusters of hydraulically fractured horizontal wells[C]// SPE Eastern Regional Meeting. Charleston, West Virginia, USA: SPE, 2009: SPE-125769-MS.
|
| [107] |
WU K, OLSON J E. Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells[J]. SPE Journal, 2016, 21(3): 1000-1008.
doi: 10.2118/178925-PA
URL
|
| [108] |
WU K, OLSON J E. A simplified three-dimensional displacement discontinuity method for multiple fracture simulations[J]. International Journal of Fracture, 2015, 193(2): 191-204.
doi: 10.1007/s10704-015-0023-4
URL
|
| [109] |
WU K, OLSON J E. Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells[J]. SPE Journal, 2015, 20(2): 337-346.
doi: 10.2118/167626-PA
URL
|
| [110] |
ROUSSEL N P, SHARMA M M. Optimizing fracture spacing and sequencing in horizontal-well fracturing[J]. SPE Production & Operations, 2011, 26(2): 173-184.
|
| [111] |
WEI J, HUANG S, HAO G, et al. A multi-perforation staged fracturing experimental study on hydraulic fracture initiation and propagation[J]. Energy Exploration & Exploitation, 2020, 38(6): 2466-2484.
|
| [112] |
WU K, OLSON J, BALHOFF M T, et al. Numerical analysis for promoting uniform development of simultaneous multiple-fracture propagation in horizontal wells[J]. SPE Production & Operations, 2017, 32(1): 41-50.
|
| [113] |
CHENG W, JIANG G, TIAN H, et al. Numerical investigations of the fracture geometry and fluid distribution of multistage consecutive and alternative fracturing in a horizontal well[J]. Computers and Geotechnics, 2017, 92: 41-56.
doi: 10.1016/j.compgeo.2017.07.023
URL
|
| [114] |
CHENG W, JIANG G, JIN Y. Numerical simulation of fracture path and nonlinear closure for simultaneous and sequential fracturing in a horizontal well[J]. Computers and Geotechnics, 2017, 88: 242-255.
doi: 10.1016/j.compgeo.2017.03.019
URL
|
| [115] |
TIAN F, JIN Y, JIN F, et al. Multi-fracture synchronous propagation mechanism of multi-clustered fracturing in interlayered tight sandstone reservoir[J]. Sustainability, 2022, 14(14): 8768.
doi: 10.3390/su14148768
URL
|
| [116] |
周福建, 袁立山, 刘雄飞, 等. 暂堵转向压裂关键技术与进展[J]. 石油科学通报, 2022(3): 365-381.
|
|
[ZHOU F J, YUAN L S, LIU X F, et al. Key technologies and advances in temporary plugging and diversion fracturing[J]. Bulletin of Petroleum Science, 2022(3): 365-381.]
|
| [117] |
LIN H, TIAN Y, SUN Z, et al. Fracture interference and refracturing of horizontal wells[J]. Processes, 2022, 10(5): 899.
doi: 10.3390/pr10050899
URL
|
| [118] |
ZOU Y, MA X, ZHANG S. Numerical Modeling of Fracture Propagation During Temporary-Plugging Fracturing[J]. SPE Journal, 2020, 25(03): 1503-1522.
doi: 10.2118/199351-PA
URL
|
| [119] |
LI Y, SHEN J, ZOU L, et al. Multi-fracture growth law for temporary plugging and diversion fracturing of horizontal well with multiple clusters in shale reservoir[J]. Processes, 2023, 11(8): 2251.
doi: 10.3390/pr11082251
URL
|
| [120] |
WANG Q, WANG D, YU B, et al. Evolution of elastic-plastic characteristics of rocks within middle-deep geothermal reservoirs under high temperature[J]. Natural Resources Research, 2024, 33(4): 1573-1596.
doi: 10.1007/s11053-024-10342-4
|
| [121] |
LI Y, ZHANG Q, ZOU Y. Experimental Investigation of the Growth Law of Multi-Fracture during Temporary Plugging Fracturing within a Stage of Multi-Cluster in a Horizontal Well[J]. Processes, 2022, 10(4): 637.
doi: 10.3390/pr10040637
URL
|
| [122] |
邹雨时, 李彦超, 杨灿, 等. 页岩水平井多簇喷砂射孔暂堵转向压裂裂缝扩展规律[J]. 石油勘探与开发, 2024, 51(3): 624-634.
doi: 10.11698/PED.20240042
|
|
[ZOU Y S, LI Y C, YANG C, et al. Fracture propagation law of temporary plugging and diverting fracturing with multi-cluster abrasive jet perforations in horizontal shale wells[J]. Petroleum Exploration and Development, 2024, 51(3): 624-634.]
|
| [123] |
CHANG X, WANG X, YANG C, et al. Simulation and optimization of fracture pattern in temporary plugging fracturing of horizontal shale gas wells[J]. Fuel, 2024, 359: 130378.
doi: 10.1016/j.fuel.2023.130378
URL
|
| [124] |
WANG Y, SONG H, ZHOU F. Geometric characteristics of diverting fractures for multi-stage dynamic temporary plugging and diverting fracturing in fractured reservoir[J]. Physics of Fluids, 2024, 36(3): 37107.
doi: 10.1063/5.0195980
URL
|
| [125] |
魏春雷, 汪道兵, 霍庭旺, 等. 交变温载作用下碳酸盐岩地热储层基质酸化孔隙结构演化规律的实验研究[C]// 北京力学会第三十一届学术年会论文集. 中国北京, 2025: 464-466.
|
|
[WEI C L, WANG D B, HUO T W, et al. Experimental study on the evolution law of pore structure of carbonate geothermal reservoir matrix acidizing under alternating thermal load[C]// Proceedings of the 31st Annual Academic Conference of Beijing Mechanics Society. Beijing, China, 2025: 464-466.]
|
| [126] |
李亚林, 敬显武, 鲁红升. 碳酸盐岩气藏清洁转向酸的研究[J]. 精细石油化工进展, 2015, 16(4): 9-11.
|
|
[LI Y L, JING X W, LU H S. Research on clean diverting acid for carbonate gas reservoir[J]. Progress in Fine Petrochemicals, 2015, 16(4): 9-11.]
|
| [127] |
WANG D, QU Z, LIU C, et al. A numerical investigation into the propagation of acid-etched wormholes in geothermal wells[J]. Unconventional Resources, 2024, 4: 100083.
doi: 10.1016/j.uncres.2024.100083
URL
|
| [128] |
SUN W, ZHAO Z, XIONG J, et al. A non-cross-linked CO2 foam fracturing fluid with low friction[J]. Canadian Journal of Chemical Engineering, 2022, 100(11): 3283-3290.
|
| [129] |
ZHOU J, RANJITH P G, WANNIARACHCHI W A M. Different strategies of foam stabilization in the use of foam as a fracturing fluid[J]. Advances in Colloid and Interface Science, 2020, 281: 102187.
|
| [130] |
WANG M, WU W, CHEN S, et al. Experimental evaluation of the flow resistance of CO2 foam fracturing fluids and simulation prediction for fracture propagation[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 16.
doi: 10.1007/s40948-023-00543-1
|
| [131] |
SU X, QI N, HAN Z, et al. Flow and plugging behavior of foams in fractures of fractured reservoirs[J]. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2023, 674: 131846.
|
| [132] |
XU Z, CAO A, CHEN L, et al. Flow characteristics of foam in fracture networks[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10098-10106.
|
| [133] |
JI B, PAN H, ZHOU Y, et al. Molecular simulation of CO2 foam injection to reduce water lock effect and enhance CH4 replacement in coal[J]. Fuel, 2025, 356: 129424.
|
| [134] |
王全. 超临界CO2聚能压裂裂缝动态起裂特征研究[D]. 北京: 中国石油大学(北京), 2023.
|
|
[WANG Q. Research on dynamic initiation characteristics of fractures induced by supercritical CO2 shaped charge fracturing[D]. Beijing: China University of Petroleum (Beijing), 2023.]
|
| [135] |
刘书源, 朱万成, 刘赫洋, 等. 低渗透储层超临界CO2压裂裂缝起裂与扩展机制研究进展[J]. 有色金属(矿山部分), 2024, 76(6): 70-83.
|
|
[LIU S Y, ZHU W C, LIU H Y, et al. Research progress on fracture initiation and propagation mechanism of supercritical CO2 fracturing in low-permeability reservoirs[J]. Nonferrous Metals (Mining Section), 2024, 76(6): 70-83.]
|
| [136] |
WANG J, WANG Z, SUN B, et al. Optimization design of hydraulic parameters for supercritical CO2 fracturing in unconventional gas reservoir[J]. Fuel, 2019, 252: 125199.
|
| [137] |
CHEN H, KANG Y, JIN W, et al. Numerical modeling of fracture propagation of supercritical CO2 compound fracturing[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(5): 1010-1025.
|
| [138] |
DU D, LIU P, TENG J, et al. Numerical simulation of multicrack propagation dynamics in supercritical CO2 fracturing of tight reservoirs[J]. Energy & Fuels, 2022, 36(22): 13526-13539.
doi: 10.1021/acs.energyfuels.2c02621
URL
|
| [139] |
郭兴, 孙晓, 穆景福, 等. 超临界CO2压裂缝内支撑剂运移规律[J]. 钻井液与完井液, 2022, 39(5): 629-637.
|
|
[GUO X, SUN X, MU J F, et al. Migration law of proppant in fractures during supercritical CO2 fracturing[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 629-637.]
|
| [140] |
彭寿昌, 徐东升, 高阳, 等. 超临界CO2分段多簇压裂井间干扰规律研究[J]. 高校地质学报, 2023, 29(1): 47-56.
|
|
[PENG S C, XU D S, GAO Y, et al. Inter-well interference law study of staged multi-cluster supercritical CO2 fracturing[J]. Geological Journal of China Universities, 2023, 29(1): 47-56.]
|
| [141] |
JIN G, ROY B. Hydraulic-fracture geometry characterization using low-frequency DAS signal[J]. Leading Edge, 2017, 36(12): 975-980.
doi: 10.1190/tle36120975.1
URL
|
| [142] |
RICHTER P, PARKER T, WOERPEL C, et al. Hydraulic fracture monitoring and optimization in unconventional completions using a high-resolution engineered fibre-optic distributed acoustic sensor[J]. First Break, 2019, 37(4): 63-68.
|
| [143] |
魏书映. 页岩水力压裂储层地震监测机理与方法研究[D]. 北京: 中国石油大学(北京), 2023.
|
|
[WEI S Y. Research on seismic monitoring mechanism and methods of shale hydraulic fracturing reservoir[D]. Beijing: China University of Petroleum (Beijing), 2023.]
|
| [144] |
崔晨雨. 致密油气藏复杂压裂裂缝智能反演方法研究[D]. 青岛: 中国石油大学(华东), 2019.
|
|
[CUI C Y. Research on intelligent inversion method for complex fracturing fractures in tight oil and gas reservoirs[D]. Qingdao: China University of Petroleum (Huadong), 2019.]
|
| [145] |
DONG Z, WU L, WANG L, et al. Optimization of Fracturing Parameters with Machine-Learning and Evolutionary Algorithm Methods[J]. Energies, 2022, 15(16): 6063.
doi: 10.3390/en15166063
URL
|
| [146] |
张傲, 卫海洋, 杨浩天, 等. 爆破裂隙对低渗砂岩铀矿地浸规律影响研究[J]. 中国矿业, 2024.
|
|
[ZHANG A, WEI H Y, YANG H T, et al. Study on the influence of blasting fractures on the in-situ leaching law of low-permeability sandstone uranium deposits[J]. China Mining Magazine, 2024.]
|
| [147] |
NIU Q, HU M, CHANG J, et al. Explosive fracturing mechanism in low-permeability sandstone-type uranium deposits considering different acidification reactions[J]. Energy, 2024, 312: 133676.
doi: 10.1016/j.energy.2024.133676
URL
|
| [148] |
张磊. 探讨原地爆破浸出采铀中浸出和水冶的工艺[J]. 科技与企业, 2016(4): 122-123.
|
|
[ZHANG L. Discussion on the process of leaching and hydrometallurgy in in-situ blasting leaching uranium mining[J]. Science and Technology and Enterprise, 2016(4): 122-123.]
|
| [149] |
王伟, 李小春, 袁维, 等. 低渗透砂岩型铀矿床爆破增渗模型试验及增渗机制研究[J]. 岩石力学与工程学报, 2016, 35(8): 1609-1617.
|
|
[WANG W, LI X C, YUAN W, et al. Model experiment and permeability enhancement mechanism study of blast permeability enhancement for low-permeability sandstone-type uranium deposits[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1609-1617.]
|
| [150] |
张友澎, 赵利信, 王亚奴, 等. 高能气体致裂技术在低渗砂岩型铀矿地浸开采中的应用[J]. 铀矿冶, 2024, 43(3): 1-8.
|
|
[ZHANG Y P, ZHAO L X, WANG Y N, et al. Application of high-energy gas fracturing technology in in-situ leaching mining of low-permeability sandstone-type uranium deposits[J]. Uranium Mining and Metallurgy, 2024, 43(3): 1-8.]
|
| [151] |
王伟, 李小春. 低渗透砂岩型铀矿床增渗方法及其可行性研究[J]. 岩土力学, 2009, 30(8): 2309-2314.
|
|
[WANG W, LI X C. Permeability enhancement methods and feasibility study for low-permeability sandstone-type uranium deposits[J]. Rock and Soil Mechanics, 2009, 30(8): 2309-2314.]
|
| [152] |
张家田, 郑向秀, 吴银川, 等. 可视化测井技术的发展、装备及应用[J]. 测井技术, 2018, 42(5): 489-496.
|
|
[ZHANG J T, ZHENG X X, WU Y C, et al. Development, equipment and application of visual logging technology[J]. Well Logging Technology, 2018, 42(5): 489-496.]
|
| [153] |
张翀, 贾皓, 王亚安, 等. 地浸采铀用潜水电泵泵轴结构与材料优选[J]. 铀矿冶, 2024, 43(2): 58-65.
|
|
[ZHANG C, JIA H, WANG Y A, et al. Optimization of pump shaft structure and material for submersible electric pump used in in-situ leaching uranium mining[J]. Uranium Mining and Metallurgy, 2024, 43(2): 58-65.]
|
| [154] |
刘乃忠, 李喜龙, 王坚朴, 等. 分布式原地浸出采铀工艺技术与关键设备[C]// 中国核学会2015年学术年会. 中国四川绵阳, 2015: 335-343.
|
|
[LIU N Z, LI X L, WANG J P, et al. Distributed in-situ leaching uranium mining technology and key equipment[C]// Chinese Nuclear Society 2015 Annual Academic Conference. Mianyang, Sichuan, China, 2015: 335-343.]
|
| [155] |
侯代稳, 李宏星, 刘双民, 等. 低渗透砂岩型铀矿高压注液技术研究[J]. 铀矿冶, 2025, 44(3): 16-22.
|
|
[HOU D W, LI H X, LIU S M, et al. Research on high-pressure injection technology for low-permeability sandstone-type uranium deposits[J]. Uranium Mining and Metallurgy, 2025, 44(3): 16-22.]
|
| [156] |
SHI J, ZHANG J, ZHANG C, et al. Numerical model on predicting hydraulic fracture propagation in low-permeability sandstone[J]. International Journal of Damage Mechanics, 2021, 30(2): 297-320.
doi: 10.1177/1056789520963206
URL
|
| [157] |
卫海洋, 郑永香, 张傲. 低渗砂岩铀矿水力压裂增渗裂纹扩展规律研究[J]. 有色金属(矿山部分), 2025, 77(2): 186-194.
|
|
[WEI H Y, ZHENG Y X, ZHANG A. Study on the law of hydraulic fracturing permeability enhancement crack propagation in low-permeability sandstone uranium deposits[J]. Nonferrous Metals (Mining Section), 2025, 77(2): 186-194.]
|
| [158] |
DE SILVA V R S, RANJITH P G, PERERA M S A, et al. A low energy rock fragmentation technique for in-situ leaching[J]. Journal of Cleaner Production, 2018, 204: 586-606.
doi: 10.1016/j.jclepro.2018.08.296
URL
|
| [159] |
CHEN S, WEI X, LIU J, et al. Weak acid leaching of uranium ore from a high carbonate uranium deposit[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(1): 503-512.
|
| [160] |
JIA J, RONG H, JIAO Y, et al. Mineralogy and geochemistry of carbonate cement in sandstone and implications for mineralization of the qianjiadian sandstone-hosted uranium deposit, southern songliao basin, china[J]. Ore Geology Reviews, 2020, 118: 103387.
|
| [161] |
LIU B, SUZUKI A, ITO T. Numerical analysis of different fracturing mechanisms between supercritical CO2 and water-based fracturing fluids[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104207.
|
| [162] |
ZHOU Z L, HOU Z K, GUO Y T, et al. Experimental study of hydraulic fracturing for deep shale reservoir[J]. Engineering Fracture Mechanics, 2024, 296: 109968.
|
| [163] |
WU J, WU M, GUO Y, et al. Study on multi-cluster fracturing simulation of deep reservoir based on cohesive element modeling[J]. Frontiers in Energy Research, 2024, 12: 1335035.
|
| [164] |
CHEN D, YANG Z, WANG M, et al. DDA simulation study on fracturing failure reproducibility of heterogenous rock[J]. Frontiers in Earth Science, 2023, 11: 1251950.
|
| [165] |
ZHANG H, CHEN J, GONG D, et al. Effects of fracturing parameters on fracture network evolution during multicluster fracturing in a heterogeneous reservoir[J]. Computers and Geotechnics, 2023, 160: 105574.
|
| [166] |
AL MTEIRI S, SUBOYIN A, RAHMAN M M, et al. Hydraulic fracture propagation and analysis in heterogeneous middle eastern tight gas reservoirs: influence of natural fractures and well placement[J]. ACS Omega, 2020, 6(1): 799-815.
doi: 10.1021/acsomega.0c05380
URL
|
| [167] |
CHEN W, KONIETZKY H, LIU C, et al. Hydraulic fracturing simulation for heterogeneous granite by discrete element method[J]. Computers and Geotechnics, 2018, 95: 1-15.
doi: 10.1016/j.compgeo.2017.11.016
URL
|
| [168] |
YAO Y, WANG K, ZENG T, et al. The effects of inclusions and heterogeneous stress field on hydraulic fracture[J]. Geophysics, 2018, 83(3): MR153-MR166.
|
| [169] |
SHI X, ZHANG W, XU H, et al. Experimental study of hydraulic fracture initiation and propagation in unconsolidated sand with the injection of temporary plugging agent[J]. Journal of Petroleum Science & Engineering, 2020, 190: 106813.
|
| [170] |
YAN C, CHEN Y, CHEN T, et al. Experimental study of hydraulic fracturing for unconsolidated reservoirs[J]. Rock Mechanics and Rock Engineering, 2022, 55(6): 3399-3424.
doi: 10.1007/s00603-022-02827-6
|
| [171] |
WANNIARACHCHI W A M, RANJITH P G, PERERA M S A. Shale gas fracturing using foam-based fracturing fluid: A review[J]. Environmental Earth Sciences, 2017, 76: 1-15.
doi: 10.1007/s12665-016-6304-z
URL
|
| [172] |
刘赛, 娄清香, 刘雯雯, 等. 强水敏致密砾岩储层压裂液侵入伤害实验[J]. 岩性油气藏, 2025, 37(4): 192-200.
doi: 10.12108/yxyqc.20250418
|
|
[LIU S, LOU Q X, LIU W W, et al. Experimental study on fracturing fluid invasion damage in strong water-sensitive tight conglomerate reservoirs[J]. Lithologic Reservoirs, 2025, 37(4): 192-200.]
doi: 10.12108/yxyqc.20250418
|
| [173] |
蒋海岩, 刘召, 袁士宝, 等. 水敏性低渗透稠油薄油层压裂改造方法[J]. 新疆大学学报(自然科学版), 2017, 34(3): 299-302.
|
|
[JIANG H Y, LIU Z, YUAN S B, et al. Fracturing treatment methods for water-sensitive low-permeability heavy oil thin oil layers[J]. Journal of Xinjiang University (Natural Science Edition), 2017, 34(3): 299-302.]
|