| [1] |
沙尔巴托娃, 苏尔古切夫,王福松译. 非均质油层的周期作用[M]. 北京: 石油工业出版社, 1989: 141-145.
|
|
[SHALBATOVA S, SURGUCHEV L, translated by WANG F S. Periodic processes in heterogeneous oil reservoirs[M]. Beijing: Petroleum Industry Press, 1989: 141-145.]
|
| [2] |
段文标, 张永强, 高春宁, 等. 安塞油田长6段特低渗油藏水驱特征[J]. 新疆石油地质, 2025, 46(3): 353-359.
|
|
[DUAN W B, ZHANG Y Q, GAO C N, et al. Waterflooding characteristics of ultra-low permeability reservoirs in Chang 6 member of Ansai Oilfield[J]. Xinjiang Petroleum Geology, 2025, 46(3): 353-359.]
|
| [3] |
史博文, 唐洪立, 曹修太, 等. 不同润湿性油藏水驱微界面运移特征研究[J]. 石油科学通报, 2025, 10(2): 219-231.
|
|
[SHI B W, TANG H L, CAO X T, et al. Study on micro-interface migration characteristics of water flooding in reservoirs with different wettability[J]. Petroleum Science Bulletin, 2025, 10(2): 219-231.]
|
| [4] |
樊欣欣, 杭天宇, 涂彬. 超低渗致密油藏异步周期注水抑制水窜效果评价——以延长油田张台注水区块开发为例[J]. 石化技术, 2025, 32(3): 212-214.
|
|
[FAN X X, HANG T Y, TU B. Evaluation of the effect of asynchronous cyclic water injection on suppressing water channeling in ultra-low permeability tight reservoirs: A case study of Zhangtai waterflooding block in Yanchang Oilfield[J]. Petrochemical Technology, 2025, 32(3): 212-214.]
|
| [5] |
张国辉. 低渗储层不稳定注水实验研究[J]. 西部探矿工程, 2022, 34(3): 105-107.
|
|
[ZHANG G H. Experimental study on unsteady water injection in low-permeability reservoirs[J]. Western Exploration Engineering, 2022, 34(3): 105-107.]
|
| [6] |
周晋冲, 张彬, 雷征东, 等. 低渗透油藏不稳定注水岩心实验及增油机理[J]. 新疆石油地质, 2022, 43(4): 491-495.
|
|
[ZHOU J C, ZHANG B, LEI Z D, et al. Core experiments and oil enhancement mechanism of unsteady water injection in low-permeability reservoirs[J]. Xinjiang Petroleum Geology, 2022, 43(4): 491-495.]
|
| [7] |
周军, 史叶, 梁光川, 等. 分时电价下油田分压周期注水优化研究[J]. 石油钻探技术, 2024, 52(3): 106-111.
|
|
[ZHOU J, SHI Y, LIANG G C, et al. Optimization of partial-pressure cyclic water injection in oilfields under time-of-use electricity pricing[J]. Petroleum Drilling Technology, 2024, 52(3): 106-111.]
|
| [8] |
严华荣, 潘昭才, 张宝, 等. 缝洞型碳酸盐岩油藏水驱后注氮气驱油特征实验研究[J]. 石油科学通报, 2025, 10(3): 565-574.
|
|
[YAN H R, PAN Z C, ZHANG B, et al. Experimental study on oil displacement characteristics of nitrogen injection after water flooding in fractured-vuggy carbonate reservoirs[J]. Petroleum Science Bulletin, 2025, 10(3): 565-574.]
|
| [9] |
魏学刚, 郭臣, 李小波, 等. 缝洞型油藏水驱气驱后剩余油分布及改善对策[J]. 长江大学学报(自然科学版), 2025, 22(3): 74-81.
|
|
[WEI X G, GUO C, LI X B, et al. Distribution of remaining oil after water flooding and gas flooding in fractured-vuggy reservoirs and improvement measures[J]. Journal of Yangtze University (Natural Science Edition), 2025, 22(3): 74-81.]
|
| [10] |
袁伟峰, 侯吉瑞, 刘洋, 等. 海上油田水驱后剩余油分布规律及二元驱动用潜力[J]. 石油科学通报, 2025, 10(1): 133-143.
|
|
[YUAN W F, HOU J R, LIU Y, et al. Distribution characteristics of remaining oil after water flooding and potential of binary flooding in offshore oilfields[J]. Petroleum Science Bulletin, 2025, 10(1): 133-143.]
|
| [11] |
孙秋分, 秦佳正, 冯乔, 等. 基于机器学习的裂缝水驱气藏采收率预测方法[J/OL]. 油气藏评价与开发, 1-10[2025-08-04].
|
|
[SUN Q F, QIN J Z, FENG Q, et al. Method for predicting recovery factor of fractured waterflooded gas reservoirs based on machine learning[J/OL]. Reservoir Evaluation and Development, 1-10[2025-08-04].]
|
| [12] |
童长兵, 程时清, 石立华, 等. 基于微流控模型的致密油藏周期注水微观剩余油分布实验[J]. 大庆石油地质与开发, 2025, 44(3): 159-167.
|
|
[TONG C B, CHENG S Q, SHI L H, et al. Experimental study on microscopic remaining oil distribution in tight reservoirs during cyclic water injection based on a microfluidic model[J]. Daqing Petroleum Geology and Development, 2025, 44(3): 159-167.]
|
| [13] |
范乐宾, 祁成祥, 陈朝辉, 等. 基于压力波动的周期注水效果评价方法及应用[J]. 承德石油高等专科学校学报, 2023, 25(2): 17-22.
|
|
[FAN L B, QI C X, CHEN C H, et al. Method and application for evaluating the effect of cyclic water injection based on pressure fluctuations[J]. Journal of Chengde Petroleum College, 2023, 25(2): 17-22.]
|
| [14] |
王文君, 陈由旺, 朱英如, 等. 基于知识图谱的油田集输与注水系统能耗异常智能辅助决策方法[J]. 石油科学通报, 2025, 10(3): 620-632.
|
|
[WANG W J, CHEN Y W, ZHU Y R, et al. Intelligent decision-support method for abnormal energy consumption in oilfield gathering, transportation and water injection systems based on knowledge graph[J]. Petroleum Science Bulletin, 2025, 10(3): 620-632.]
|
| [15] |
苏彦春, 朱志强. 裂缝性潜山油藏渗流特征及不稳定注水策略——以渤海锦州25-1南油田潜山油藏为例[J]. 中国海上油气, 2019, 31(6): 78-85.
|
|
[SU Y C, ZHU Z Q. Seepage characteristics and unsteady water injection strategy for fractured buried-hill reservoirs: A case study of the buried-hill reservoir in Bohai Jinzhou 25-1 South Oilfield[J]. China Offshore Oil and Gas, 2019, 31(6): 78-85.]
|
| [16] |
许林忠, 宋荆海. 坪北特低渗透油藏周期注水采油技术研究[J]. 江汉石油职工大学学报, 2022, 35(6): 4-6.
|
|
[XU L Z, SONG J H. Study on cyclic water injection production technology for ultra-low permeability reservoirs in Pingbei Oilfield[J]. Journal of Jianghan Petroleum Staff University, 2022, 35(6): 4-6.]
|
| [17] |
马奎前, 房娜, 吕坐彬, 等. 潜山裂缝性油藏不稳定注水量化研究及应用[J]. 天然气与石油, 2023, 41(5): 44-49.
|
|
[MA K Q, FANG N, LÜ Z B, et al. Quantitative study and application of unsteady water injection for fractured buried-hill reservoirs[J]. Natural Gas and Oil, 2023, 41(5): 44-49.]
|
| [18] |
LI Y, LUO H W, LI H T. A brief review of dynamic capillarity effect and its characteristics in low permeability and tight reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 189: 1-9
|
| [19] |
TIAN S B, LEI G, HE S L. Dynamic effect of capillary pressure in low permeability reservoirs. Petroleum Exploration and Development, 2012, 39(3): 405-411.
doi: 10.1016/S1876-3804(12)60057-3
URL
|
| [20] |
柴汝宽, 刘月田, 何宇廷. 水驱过程中原油组分变化规律及机理[J]. 石油科学通报, 2021, 6(1): 114-126.
|
|
[CHAI R K, LIU Y T, HE Y T. Variation law and mechanism of crude oil components during water flooding[J]. Petroleum Science Bulletin, 2021, 6(1): 114-126.]
|
| [21] |
赵冀, 尹雪梅. 水驱砂岩油藏特高含水期定液量生产下合理注采比研究[J]. 石油石化绿色低碳, 2025, 10(3): 37-41.
|
|
[ZHAO J, YIN X M. Study on reasonable injection-production ratio for sandstone reservoirs under constant liquid production in the ultra-high water cut stage of water flooding[J]. Petroleum & Petrochemical Green and Low Carbon, 2025, 10(3): 37-41.]
|
| [22] |
刘芳洲, 王代刚, 李勇, 等. 碳酸盐岩油藏低矿化度水驱润湿调控提高采收率作用机理[J]. 石油科学通报, 2025, 10(2): 206-218.
|
|
[LIU F Z, WANG D G, LI Y, et al. Mechanism of enhanced oil recovery by wettability alteration during low-salinity water flooding in carbonate reservoirs[J]. Petroleum Science Bulletin, 2025, 10(2): 206-218.]
|
| [23] |
曹进, 张冬林, 罗江云, 等. 下寺湾油田南沟井区不稳定注水研究[J]. 中国石油和化工标准与质量, 2024, 44(4): 93-95.
|
|
[CAO J, ZHANG D L, LUO J Y, et al. Study on unsteady water injection in Nangou well block of Xiaciwan Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2024, 44(4): 93-95.]
|
| [24] |
杜敏, 郭红强, 夏晨丹, 等. 延长油田X区块高含水油藏不稳定注水可行性机理研究[J]. 承德石油高等专科学校学报, 2024, 26(3): 24-28.
|
|
[DU M, GUO H Q, XIA C D, et al. Feasibility mechanism study of unsteady water injection in high water cut reservoirs of block X in Yanchang Oilfield[J]. Journal of Chengde Petroleum College, 2024, 26(3): 24-28.]
|
| [25] |
李文静. 义34南扩沙三段沉积微相研究及其对注水开发的影响[J]. 石化技术, 2025, 32(7): 264-265.
|
|
[LI W J. Study on sedimentary microfacies of Sha-3 member in the south extension of Yi-34 area and its influence on waterflooding development[J]. Petrochemical Technology, 2025, 32(7): 264-265.]
|
| [26] |
姚胜林, 郭春芬, 樊万红. 周期不稳定注水数值模拟分析[J]. 化学工程与装备, 2023, (6): 43-45.
|
|
[YAO S L, GUO C F, FAN W H. Numerical simulation analysis of cyclic unsteady water injection[J]. Chemical Engineering & Equipment, 2023, (6): 43-45.]
|
| [27] |
欧阳华劲, 黄红兵, 张军连, 等. 周期注水机理模型数值模拟[J]. 化学工程与装备, 2021, (12): 78-80.
|
|
[OUYANG H J, HUANG H B, ZHANG J L, et al. Numerical simulation of a mechanism model of cyclic water injection[J]. Chemical Engineering & Equipment, 2021, (12): 78-80.]
|
| [28] |
刘佳, 李小军, 沈卓媛, 等. 周期注水在白马中区长8油藏的应用[J]. 石油化工应用, 2024, 43(8): 61-64.
|
|
[LIU J, LI X J, SHEN Z Y, et al. Application of cyclic water injection in Chang 8 reservoir in the Baima Zhongqu area[J]. Petrochemical Industry Application, 2024, 43(8): 61-64.]
|
| [29] |
RAZA S H. Water and gas cyclic pulsing method for improved oil recovery[J]. Journal of Petroleum Technology, 1971, 23(12): 1467-1474.
doi: 10.2118/3005-PA
URL
|
| [30] |
俞启泰, 张素芳. 周期注水的油藏数值模拟研究[J]. 石油勘探与开发, 1993, (6): 46-53.
|
|
[YU Q T, ZHANG S F. Numerical simulation study of reservoirs under cyclic water injection[J]. Petroleum Exploration and Development, 1993, (6): 46-53.]
|
| [31] |
申友青, 田平. 碳酸盐岩油藏改善注水开发效果试验研究[J]. 油气采收率技术, 1994, (2): 45-52.
|
|
[SHEN Y Q, TIAN P. Experimental study on improving waterflooding performance in carbonate reservoirs[J]. Enhanced Oil Recovery Technology, 1994, (2): 45-52.]
|
| [32] |
黄延章, 尚根华, 陈永敏. 用核磁共振成像技术研究周期注水驱油机理[J]. 石油学报, 1995, 16(4): 62-67.
doi: 10.7623/syxb199504009
|
|
[HUANG Y Z, SHANG G H, CHEN Y M. Study on oil displacement mechanism of cyclic water injection using nuclear magnetic resonance imaging[J]. Acta Petrolei Sinica, 1995, 16(4): 62-67.]
|
| [33] |
殷代印, 翟云芳, 卓兴家. 非均质砂岩油藏周期注水的室内实验研究[J]. 大庆石油学院学报, 2000, (1): 82-84.
|
|
[YIN D Y, ZHAI Y F, ZHUO X J. Laboratory experimental study on cyclic water injection in heterogeneous sandstone reservoirs[J]. Journal of Daqing Petroleum Institute, 2000, (1): 82-84.]
|
| [34] |
王小林, 王杰祥. 层状非均质油藏不稳定注水室内实验研究[J]. 特种油气藏, 2009, 16(4): 79-81.
|
|
[WANG X L, WANG J X. Laboratory experimental study on unsteady water injection in layered heterogeneous reservoirs[J]. Special Oil & Gas Reservoirs, 2009, 16(4): 79-81.]
|
| [35] |
YONG L, ZHAO L, WANG S, et al. Using cyclic alternating water injection to enhance oil recovery for carbonate reservoirs developed by linear horizontal well pattern[J]. Petroleum Exploration and Development, 2021, 48(5): 13.
|
| [36] |
GEOGE M, GUIDROZ E T, DANEIEL O. Project-A successful spraberry flood[C]. JPT, 1967, (9): 1133-1140.
|
| [37] |
ERIGHT R J. Spraberry cyclic technique may get 500 million bbl of oil[J]. Oil and Gas Journal, 1962, 8(8): 30-34.
|
| [38] |
ELKINS L F, SKOV A F, GOULD R C. Progress report spraberry waterflood reservoir performance[C]. Well Stimulation and Water Treating and Handling, SPE, 1809.
|
| [39] |
ELKINS L F, SKOV A M. Cyclic water flooding the spraberry utilizes “end effects” to increase oil production rate[J]. Journal of Petroleum Technology, 1963, 15(8): 877-884.
doi: 10.2118/545-PA
URL
|
| [40] |
SMITH G E. Waterflooding heavy oils[C]// SPE Rocky Mountain Regional Meeting. 1992.
|
| [41] |
STIRPE M T, GUZMAN J, MANRIQUE E, et al. Cyclic water injection simulations for evaluations of its potential in Lagocinco field[C]// SPE Improved Oil Recovery Conference. SPE, 2004: SPE-89378-MS.
|
| [42] |
SHCHIPANOV A, SURGUCHEV L, JAKOBSEN S R. Improved oil recovery by cyclic injection and production[C]// Spe Russian Oil & Gas Technical Conference & Exhibition. US, 2008.
|
| [43] |
PEREZ D, SALICIONI F, UCAN S. Cyclic water injection in San Jorge Gulf Basin, Argentina[C]// SPE Latin America and Caribbean Petroleum Engineering Conference. SPE, 2014: D021S014R002.
|
| [44] |
刘云彬, 李永伏. 高含水后期周期注水应用的一个实例[J]. 大庆石油地质与开发, 2005, (5): 44-45.
|
|
[LIU Y B, LI Y F. A case study on the application of cyclic water injection in the late high water cut stage[J]. Daqing Petroleum Geology and Development, 2005, (5): 44-45.]
|
| [45] |
张煜, 张进平, 王国壮. 不稳定注水技术研究及应用[J]. 江汉石油学院学报, 2001(1): 49-52.
|
|
[ZHANG Y, ZHANG J P, WANG G Z. Study and application of unsteady water injection technology[J]. Journal of Jianghan Petroleum Institute, 2001, (1): 49-52.]
|
| [46] |
王立军. 水动力学理论在提高油田开发效率中的应用[J]. 江汉石油职工大学学报, 2003(3): 37-39.
|
|
[WANG L J. Application of hydrodynamics theory in improving oilfield development efficiency[J]. Journal of Jianghan Petroleum Staff University, 2003, (3): 37-39.]
|
| [47] |
王云献, 冯鑫, 杨庆红, 等. 渤中25-1南油田周期注水研究及实践[J]. 石油地质与工程, 2008, 22(6): 27-29.
|
|
[WANG Y X, FENG X, YANG Q H, et al. Research and practice of cyclic water injection in Bozhong 25-1 South Oilfield[J]. Petroleum Geology and Engineering, 2008, 22(6): 27-29.]
|
| [48] |
王骁睿, 任婧, 张君学, 等. 西 205 区开发特征认识及下步调整意见[J]. 化工管理, 2014, (5): 248-249.
|
|
[WANG X R, REN J, ZHANG J X, et al. Understanding of development characteristics and suggestions for next-step adjustment in the Xi 205 block[J]. Chemical Enterprise Management, 2014, (5): 248-249.]
|
| [49] |
陈立, 杜燕连. 基于改进小波阈值法的气液两相流特征提取及流型识别[J]. 矿冶工程, 2021, 45(3): 35-42.
|
|
[CHEN L, DU Y L. Feature extraction and flow pattern identification of gas-liquid two-phase flow based on an improved wavelet threshold method[J]. Mining and Metallurgical Engineering, 2021, 45(3): 35-42.]
|