[1] |
陈琼陶, 于天奇, 全美荣, 等. 20钢埋地管道外腐蚀失效行为分析研究[J]. 石油工程建设, 2020, 46(06): 67-72.
|
|
[CHEN Q T, YU T Q, QUAN M R, et al. Study on external corrosion failure behavior of 20 steel buried pipeline[J]. Petroleum Engineering Construction, 2019, 46(06): 67-72.]
|
[2] |
吴明, 谢飞, 陈旭, 等. 埋地油气管道腐蚀失效研究进展及思考[J]. 油气储运, 2022, 41(06): 712-722.
|
|
[WU M, XIE F, CHEN X, et al. Research progress and consideration on corrosion failure of buried oil and gas pipelines[J]. Oil & Gas Storage and Transportation, 2022, 41(06): 712-722.]
|
[3] |
尹爱军, 何彦霖, 谭建, 等. 数模融合驱动的集输管道内腐蚀预测[J]. 安全与环境学报, 2022, 22(05): 2556-2562.
|
|
[YIN A J, HE Y L, TAN J, et al. Corrosion prediction in gathering and transportation pipelines driven by digital-analog fusion[J]. Journal of Safety and Environment, 2022, 22(05): 2556-2562.]
|
[4] |
毕傲睿, 骆正山, 王小完, 等. 基于土壤腐蚀主成分的金属管道退化维纳过程研究[J]. 材料保护, 2018, 51(01): 37-42.
|
|
[BI A R, LUO Z S, WANG X W, et al. Wiener process of metal pipe degradation based on soil corrosion principal component[J]. Materials Protection, 2018, 51(01): 37-42.]
|
[5] |
李金松, 赵元东, 宋明垚, 等. 基于IGM-WOA-SVM的埋地管道腐蚀深度预测技术研究[J]. 石油工程建设, 2021, 47(06): 1-6.
|
|
[LI J S, ZHAO Y D, SONG M Y, et al. Research on corrosion depth prediction technology of buried pipeline based on IGM-WOA-SVM[J]. Petroleum Engineering Construction, 2021, 47(06): 1-6.]
|
[6] |
肖荣鸽, 靳帅帅, 庄琦, 等. 基于灰色理论的油气管道腐蚀速率预测[J]. 热加工工艺, 2022, 51(18): 53-57.
|
|
[XIAO R G, JIN S S, ZHUANG Q, et al. Prediction of corrosion rate of oil and gas pipeline based on grey theory[J]. Hot Working Technology, 2022, 51(18): 53-57.]
|
[7] |
张梁, 高源, 杨光, 等. BP神经网络模型的改进及其在海底管道外腐蚀速率预测中的应用[J]. 安全与环境学报, 2023, 23(11): 3882-3888.
|
|
[ZHANG L, GAO Y, YANG G, et al. Improvement of BP neural network model and its application to prediction of external corrosion rate of submarine pipeline[J]. Journal of Safety and Environment, 2019, 23(11): 3882-3888.]
|
[8] |
张新生, 张莹莹. 基于KPCA-ALO-WLSSVM的埋地管道外腐蚀速率预测[J]. 安全与环境学报, 2022, 22(04): 1804-1812.
|
|
[ZHANG X S, ZHANG Y Y. External corrosion rate prediction of buried pipeline based on KPCA-ALO-WLSSVM[J]. Journal of Safety and Environment, 2002, 22(04): 1804-1812.]
|
[9] |
宋正涛, 穆化巍, 赵红卫, 等. 基于数据融合和非线性维纳过程的埋地管道退化过程预测[J]. 石油工程建设, 2023, 49(04): 48-54.
|
|
[SONG Z T, MU H W, ZHAO H W, et al. Degradation process prediction of buried pipeline based on data fusion and nonlinear wiener process[J]. Petroleum Engineering Construction, 2023, 49(04): 48-54.]
|
[10] |
梁昌晶, 管恩东. 基于RBF模型的埋地管道外腐蚀速率预测[J]. 油气储运, 2022, 41(02): 233-240.
|
|
[LIANG C J, GUAN E D. External corrosion rate prediction of buried pipeline based on RBF model[J]. Oil & Gas Storage and Transportation, 2022, 41(02): 233-240.]
|
[11] |
姜锦涛, 梁守才, 徐派, 等. 基于响应面法的埋地管道外腐蚀速率预测模型研究[J]. 材料保护, 2024, 57(07): 127-135.
|
|
[JIANG J T, LIANG S C, XU P, et al. Research on external corrosion rate prediction model of buried pipeline based on response surface method[J]. Materials Protection, 2019, 57(07): 127-135.]
|
[12] |
赵阳. 小样本预测埋地管道外腐蚀速率[J]. 石油钻采工艺, 2024, 46(01): 106-111.
|
|
[ZHAO Y. Small sample prediction of corrosion rate of buried pipeline[J]. Oil Drilling and Production Technology, 2019, 46(01): 106-111.]
|
[13] |
于扬, 孙东亮. 基于PCA-BPNN模型的埋地管道腐蚀速率预测研究[J]. 兰州理工大学学报, 2024, 50(04): 60-68.
|
|
[YU Y, SUN D L. Research on corrosion rate prediction of buried pipeline based on PCA-BPNN model[J]. Journal of Lanzhou University of Technology, 2024, 50(04): 60-68.]
|
[14] |
梁昌晶, 谢波, 刘延庆, 等. 基于KPCA-GWO-SVM的埋地管道土壤腐蚀速率预测[J]. 油气储运, 2021, 40(08): 938-944.
|
|
[LIANG C J, XIE B, LIU Y Q, et al. Soil corrosion rate prediction of buried pipeline based on KPCA-GGO-SVM[J]. Oil & Gas Storage and Transportation, 2021, 40(08): 938-944.]
|
[15] |
王云辉, 王丹丹, 王彬, 等. 基于机器学习模型的气液两相流流型识别技术研究[J]. 石油工程建设, 2023, 49(06): 53-58.
|
|
[WANG Y H, WANG D D, WANG B, et al. Research on flow pattern recognition technology of gas-liquid two-phase flow based on machine learning model[J]. Petroleum Engineering Construction, 2023, 49(06): 53-58.]
|
[16] |
孙玮. 基于IAOA-PNN模型的天然气压缩因子计算方法研究[J]. 石油工程建设, 2023, 49(06): 59-64.
|
|
[SUN W. Research on the calculation method of natural gas compression factor based on IAOA-PNN model[J]. Petroleum Engineering Construction, 2023, 49(06): 59-64.]
|
[17] |
付玲, 佘玲娟, 颜镀镭, 等. 基于内嵌物理信息与注意力机制BiLSTM神经网络的臂架系统疲劳损伤预测模型[J]. 机械工程学报, 2024, 60(13): 205-215.
|
|
[FU L, SHE L J, YAN D L, et al. Fatigue damage prediction model of boom system based on embedded physical information and attention mechanism BiLSTM neural network[J]. Journal of Mechanical Engineering, 2019, 60(13): 205-215.]
|
[18] |
骆颖. 基于物理信息神经网络的电力系统受扰后频率轨迹预测[J]. 电气应用, 2025, 44(05): 78-85.
|
|
[LUO Y. Frequency trajectory prediction of power system after disturbance based on physical information neural network[J]. Electrical Applications, 2020, 44(05): 78-85.]
|
[19] |
李金霞, 茹浩然, 刘文凯, 等. 基于三流体模型物理引导神经网络的扰动波速预测[J]. 化工进展, 2025, 44(04): 1815-1824.
|
|
[LI J X, RU H R, LIU W K, et al. Disturbance wave velocity prediction based on physically guided neural network of three-fluid model[J]. Chemical Industry and Engineering Progress, 2025, 44(04): 1815-1824.]
|
[20] |
周逸轩, 彭星煜, 耿月华, 等. 基于KPCA-GA-BP模型的页岩气集输管道的内腐蚀速率预测[J]. 腐蚀与防护, 2024, 45(04): 63-68.
|
|
[ZHOU Y X, PENG X Y, GENG Y H, et al. Prediction of internal corrosion rate of shale gas gathering pipeline based on KPCA-GA-BP model[J]. Corrosion and Protection, 2019, 45(04): 63-68.]
|
[21] |
屈文涛, 谢韩彧, 刘鑫, 等. 基于改进遗传算法的油气管道无人机航迹规划[J]. 科学技术与工程, 2024, 24(27): 11901-11908.
|
|
[QU W T, XIE H Y, LIU X, et al. Trajectory planning of unmanned aerial vehicles for oil and gas pipelines based on improved genetic algorithm[J]. Science Technology and Engineering, 2024, 24(27): 11901-11908.]
|
[22] |
贾柏慧. 基于遗传算法的油田集输管网优化调整方法[J]. 石油石化节能与计量, 2024, 14(10): 1-5.
|
|
[JIA B H. Optimization and adjustment method of oilfield gathering and transportation pipeline network based on genetic algorithm[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2024, 14(10): 1-5.]
|
[23] |
李珊珊, 孙朝阳, 李国栋. 基于LightGBM与SHAP的空腔积水深度可解释性机器学习模型[J]. 力学季刊, 2024, 45(02): 442-453.
|
|
[LI S S, SUN Z Y, LI G D. Interpretable machine learning model of cavity water depth based on LightGBM and SHAP[J]. Journal of Mechanics Quarterly, 2019, 45(02): 442-453.]
|
[24] |
陈林, 陆海瑛, 王泽华, 等. 融合LightGBM和SHAP的井漏类型判断及主控因素分析[J]. 钻井液与完井液, 2023, 40(06): 771-777.
|
|
[CHEN L, LU H Y, WANG Z H, et al. Well leakage type determination and main control factor Analysis integrating LightGBM and SHAP[J]. Drilling Fluids and Completion Fluids, 2023, 40(06): 771-777.]
|
[25] |
黎子豪, 蒋恕. 基于机器学习和SHAP算法的声波测井曲线重构及可解释性分析[J]. 地质科技通报, 2025, 44(01): 321-331.
|
|
[LI Z H, JIANG S. Reconstruction and interpretability analysis of acoustic logging curves based on machine learning and SHAP algorithm[J]. Bulletin of Geological Science and Technology, 2025, 44(01): 321-331.]
|
[26] |
张上要, 宋雄, 顷宏利, 等. 基于VIF-GBRT-MC模型的日径流预测[J]. 中国农村水利水电, 2024, (09): 204-210.
|
|
[ZHANG S Y, SONG X, QING H L, et al. Daily runoff prediction based on VIF-GBRT-MC model[J]. China Rural Water Resources and Hydropower, 2024, (09): 204-210.]
|
[27] |
陈志朋. 凝析油管道蜡沉积特性及蜡沉积模型研究[J]. 石油工程建设, 2024, 50(01): 44-49.
|
|
[CHEN Z P. Research on wax deposition characteristics and wax deposition model of condensate oil pipelines[J]. Petroleum Engineering Construction, 2024, 50(01): 44-49.]
|
[28] |
李鹏飞, 李鹏举, 张强, 等. 基于小样本数据的储层渗透率预测方法[J]. 计算机技术与发展, 2024, 34(07): 199-206.
|
|
[LI P F, LI P J, ZHANG Q, et al. Reservoir permeability prediction method based on small sample data[J]. Computer Technology and Development, 2024, 34(07): 199-206.]
|
[29] |
肖立志. 机器学习数据驱动与机理模型融合及可解释性问题[J]. 石油物探, 2022, 61(02): 205-212.
|
|
[XIAO L Z. The integration and interpretability of machine learning data-driven and mechanism model[J]. Geophysical Prospecting for Petroleum, 2022, 61(02): 205-212.]
|
[30] |
王火根, 胡梦婷, 刘小春. 基于机器学习和SHAP算法的我国粮食安全水平测度重构及可解释性分析[J]. 中国农业大学学报, 2025, 30(07): 264-274.
|
|
[WANG H G, HU M T, LIU X C. Reconstruction and Interpretability analysis of China’s food security level measurement based on machine learning and SHAP algorithm[J]. Journal of China Agricultural University, 2020, 30(07): 264-274.]
|